Preference elicitation for interface optimization

Krzysztof Z Gajos, Daniel S. Weld
{"title":"Preference elicitation for interface optimization","authors":"Krzysztof Z Gajos, Daniel S. Weld","doi":"10.1145/1095034.1095063","DOIUrl":null,"url":null,"abstract":"Decision-theoretic optimization is becoming a popular tool in the user interface community, but creating accurate cost (or utility) functions has become a bottleneck --- in most cases the numerous parameters of these functions are chosen manually, which is a tedious and error-prone process. This paper describes ARNAULD, a general interactive tool for eliciting user preferences concerning concrete outcomes and using this feedback to automatically learn a factored cost function. We empirically evaluate our machine learning algorithm and two automatic query generation approaches and report on an informal user study.","PeriodicalId":101797,"journal":{"name":"Proceedings of the 18th annual ACM symposium on User interface software and technology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"132","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th annual ACM symposium on User interface software and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1095034.1095063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 132

Abstract

Decision-theoretic optimization is becoming a popular tool in the user interface community, but creating accurate cost (or utility) functions has become a bottleneck --- in most cases the numerous parameters of these functions are chosen manually, which is a tedious and error-prone process. This paper describes ARNAULD, a general interactive tool for eliciting user preferences concerning concrete outcomes and using this feedback to automatically learn a factored cost function. We empirically evaluate our machine learning algorithm and two automatic query generation approaches and report on an informal user study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
界面优化的偏好激发
决策理论优化正在成为用户界面社区中的流行工具,但是创建准确的成本(或效用)函数已经成为瓶颈——在大多数情况下,这些函数的众多参数都是手动选择的,这是一个乏味且容易出错的过程。本文描述了ARNAULD,一个通用的交互式工具,用于引出用户对具体结果的偏好,并使用此反馈来自动学习因子成本函数。我们对我们的机器学习算法和两种自动查询生成方法进行了实证评估,并报告了一项非正式的用户研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interacting with large displays from a distance with vision-tracked multi-finger gestural input Zoom-and-pick: facilitating visual zooming and precision pointing with interactive handheld projectors Proceedings of the 18th annual ACM symposium on User interface software and technology PlayAnywhere: a compact interactive tabletop projection-vision system PapierCraft: a command system for interactive paper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1