{"title":"Preference elicitation for interface optimization","authors":"Krzysztof Z Gajos, Daniel S. Weld","doi":"10.1145/1095034.1095063","DOIUrl":null,"url":null,"abstract":"Decision-theoretic optimization is becoming a popular tool in the user interface community, but creating accurate cost (or utility) functions has become a bottleneck --- in most cases the numerous parameters of these functions are chosen manually, which is a tedious and error-prone process. This paper describes ARNAULD, a general interactive tool for eliciting user preferences concerning concrete outcomes and using this feedback to automatically learn a factored cost function. We empirically evaluate our machine learning algorithm and two automatic query generation approaches and report on an informal user study.","PeriodicalId":101797,"journal":{"name":"Proceedings of the 18th annual ACM symposium on User interface software and technology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"132","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th annual ACM symposium on User interface software and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1095034.1095063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 132
Abstract
Decision-theoretic optimization is becoming a popular tool in the user interface community, but creating accurate cost (or utility) functions has become a bottleneck --- in most cases the numerous parameters of these functions are chosen manually, which is a tedious and error-prone process. This paper describes ARNAULD, a general interactive tool for eliciting user preferences concerning concrete outcomes and using this feedback to automatically learn a factored cost function. We empirically evaluate our machine learning algorithm and two automatic query generation approaches and report on an informal user study.