An E-Commerce Coupon Target Population Positioning Model Based on Random Forest and eXtreme Gradient Boosting

Zhang-Fa Yan, Yu-Lin Shen, Wei-Jun Liu, Jie-Min Long, Qingyang Wei
{"title":"An E-Commerce Coupon Target Population Positioning Model Based on Random Forest and eXtreme Gradient Boosting","authors":"Zhang-Fa Yan, Yu-Lin Shen, Wei-Jun Liu, Jie-Min Long, Qingyang Wei","doi":"10.1109/CISP-BMEI.2018.8633247","DOIUrl":null,"url":null,"abstract":"At present, the commonly used e-commerce coupon target population location method is based on Logistic, of which the positioning accuracy is not high in the case of serious data loss. In this paper, we propose a complex classification model based on Random Forest (RF)and eXtreme Gradient Boosting (XGBoost), and test the reliability of it through experiments. Our experimental results show that the model has good performance on the online Alibaba O2O Coupon Usage Forecast competition dataset.","PeriodicalId":117227,"journal":{"name":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2018.8633247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

At present, the commonly used e-commerce coupon target population location method is based on Logistic, of which the positioning accuracy is not high in the case of serious data loss. In this paper, we propose a complex classification model based on Random Forest (RF)and eXtreme Gradient Boosting (XGBoost), and test the reliability of it through experiments. Our experimental results show that the model has good performance on the online Alibaba O2O Coupon Usage Forecast competition dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机森林和极端梯度增强的电子商务优惠券目标人群定位模型
目前常用的电子商务优惠券目标人群定位方法是基于Logistic的,在数据丢失严重的情况下定位精度不高。本文提出了一种基于随机森林(Random Forest, RF)和极限梯度增强(eXtreme Gradient boost, XGBoost)的复杂分类模型,并通过实验验证了该模型的可靠性。实验结果表明,该模型在在线阿里巴巴O2O优惠券使用预测竞争数据集上具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Developed Fuzzy C-Means Algorithm for Mesh Segmentation Improved K-Means Algorithm and its Implementation Based on Mean Shift Quantitying Nonlinear Dynamic Complexity of Epileptic EEG by Conditional Entropy Based on Different Entropy Measures CT-Based MR Synthesis Using Adversarial Cycle-Consistent Networks with Paired Data Learning Internet of Things in Centralized Management of Medical Equipment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1