{"title":"Playing Planning Poker in Crowds: Human Computation of Software Effort Estimates","authors":"Mohammed Alhamed, Tim Storer","doi":"10.1109/ICSE43902.2021.00014","DOIUrl":null,"url":null,"abstract":"Reliable cost effective effort estimation remains a considerable challenge for software projects. Recent work has demonstrated that the popular Planning Poker practice can produce reliable estimates when undertaken within a software team of knowledgeable domain experts. However, the process depends on the availability of experts and can be time-consuming to perform, making it impractical for large scale or open source projects that may curate many thousands of outstanding tasks. This paper reports on a full study to investigate the feasibility of using crowd workers supplied with limited information about a task to provide comparably accurate estimates using Planning Poker. We describe the design of a Crowd Planning Poker (CPP) process implemented on Amazon Mechanical Turk and the results of a substantial set of trials, involving more than 5000 crowd workers and 39 diverse software tasks. Our results show that a carefully organised and selected crowd of workers can produce effort estimates that are of similar accuracy to those of a single expert.","PeriodicalId":305167,"journal":{"name":"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE43902.2021.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Reliable cost effective effort estimation remains a considerable challenge for software projects. Recent work has demonstrated that the popular Planning Poker practice can produce reliable estimates when undertaken within a software team of knowledgeable domain experts. However, the process depends on the availability of experts and can be time-consuming to perform, making it impractical for large scale or open source projects that may curate many thousands of outstanding tasks. This paper reports on a full study to investigate the feasibility of using crowd workers supplied with limited information about a task to provide comparably accurate estimates using Planning Poker. We describe the design of a Crowd Planning Poker (CPP) process implemented on Amazon Mechanical Turk and the results of a substantial set of trials, involving more than 5000 crowd workers and 39 diverse software tasks. Our results show that a carefully organised and selected crowd of workers can produce effort estimates that are of similar accuracy to those of a single expert.