TRIO: a Novel 10T Ternary SRAM Cell for Area-Efficient In-memory Computing of Ternary Neural Networks

Thanh-Dat Nguyen, Minh-Son Le, Thi-Nhan Pham, I. Chang
{"title":"TRIO: a Novel 10T Ternary SRAM Cell for Area-Efficient In-memory Computing of Ternary Neural Networks","authors":"Thanh-Dat Nguyen, Minh-Son Le, Thi-Nhan Pham, I. Chang","doi":"10.1109/AICAS57966.2023.10168596","DOIUrl":null,"url":null,"abstract":"We introduce TRIO, a 10T SRAM cell for inmemory computing circuits in ternary neural networks (TNNs). TRIO's thin-cell type layout occupies only 0.492μm2 in a 28nm FD-SOI technology, which is smaller than some state-of-the-art ternary SRAM cells. Comparing TRIO to other works, we found that it consumes less analog multiplication power, indicating its potential for improving the area and power efficiency of TNN IMC circuits. Our optimized TNN IMC circuit using TRIO achieved high area and power efficiencies of 369.39 TOPS/mm2 and 333.8 TOPS/W in simulations.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce TRIO, a 10T SRAM cell for inmemory computing circuits in ternary neural networks (TNNs). TRIO's thin-cell type layout occupies only 0.492μm2 in a 28nm FD-SOI technology, which is smaller than some state-of-the-art ternary SRAM cells. Comparing TRIO to other works, we found that it consumes less analog multiplication power, indicating its potential for improving the area and power efficiency of TNN IMC circuits. Our optimized TNN IMC circuit using TRIO achieved high area and power efficiencies of 369.39 TOPS/mm2 and 333.8 TOPS/W in simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于三元神经网络区域高效内存计算的新型10T三元SRAM单元
我们介绍了TRIO,一种用于三元神经网络(TNNs)内存计算电路的10T SRAM单元。TRIO的薄电池型布局在28nm FD-SOI技术中仅占0.492μm2,比一些最先进的三元SRAM电池要小。将TRIO与其他工作进行比较,我们发现它消耗更少的模拟乘法功率,这表明它具有提高TNN IMC电路的面积和功率效率的潜力。我们使用TRIO优化的TNN IMC电路在模拟中获得了369.39 TOPS/mm2和333.8 TOPS/W的高面积和功率效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synaptic metaplasticity with multi-level memristive devices Unsupervised Learning of Spike-Timing-Dependent Plasticity Based on a Neuromorphic Implementation A Fully Differential 4-Bit Analog Compute-In-Memory Architecture for Inference Application Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1