Network Intrusion Detection via a Hybrid of Genetic Algorithms and Principal Component Analysis

N. Nalini, R. Raghavendra
{"title":"Network Intrusion Detection via a Hybrid of Genetic Algorithms and Principal Component Analysis","authors":"N. Nalini, R. Raghavendra","doi":"10.1109/ADCOM.2006.4289877","DOIUrl":null,"url":null,"abstract":"In recent years network intrusion has been a problem of great concern to the design of secure computing systems. To detect an intrusion and the type of intrusion, it is desired to characterize an intrusion by its features so that future intrusions can be classified based on these features. In this paper, we present a novel method driven by the genetic algorithms and principal component analysis. This hybrid approach detects intrusions with an accuracy better than the best available till date, for several simulated tests conducted. It is hoped that this technique can also be used to detect the class of intrusion.","PeriodicalId":296627,"journal":{"name":"2006 International Conference on Advanced Computing and Communications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Advanced Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADCOM.2006.4289877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In recent years network intrusion has been a problem of great concern to the design of secure computing systems. To detect an intrusion and the type of intrusion, it is desired to characterize an intrusion by its features so that future intrusions can be classified based on these features. In this paper, we present a novel method driven by the genetic algorithms and principal component analysis. This hybrid approach detects intrusions with an accuracy better than the best available till date, for several simulated tests conducted. It is hoped that this technique can also be used to detect the class of intrusion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法和主成分分析的网络入侵检测
近年来,网络入侵已成为安全计算系统设计中备受关注的问题。为了检测入侵和入侵类型,需要通过其特征来描述入侵,以便可以根据这些特征对未来的入侵进行分类。本文提出了一种由遗传算法和主成分分析驱动的新方法。经过多次模拟测试,这种混合方法检测入侵的准确性优于迄今为止可用的最佳方法。希望该技术也可以用于检测入侵的类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message Integrity in the World Wide Web: Use of Nested Hash Function and a Fast Stream Cipher Feature Extraction Learning for Stereovision Based Robot Navigation System Semantics for a Distributed Programming Language Using SACS and Weakest Pre-Conditions On Evaluating Obfuscatory Strength of Alias-based Transforms using Static Analysis A Multi-Algorithmic Face Recognition System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1