Color is not a metric space implications for pattern recognition, machine learning, and computer vision

Thomas B. Kinsman, M. Fairchild, J. Pelz
{"title":"Color is not a metric space implications for pattern recognition, machine learning, and computer vision","authors":"Thomas B. Kinsman, M. Fairchild, J. Pelz","doi":"10.1109/WNYIPW.2012.6466642","DOIUrl":null,"url":null,"abstract":"Using a metric feature space for pattern recognition, data mining, and machine learning greatly simplifies the mathematics because distances are preserved under rotation and translation in feature space. A metric space also provides a “ruler”, or absolute measure of how different two feature vectors are. In the computer vision community color can easily be miss-treated as a metric distance. This paper serves as an introduction to why using a non-metric space is a challenge, and provides details of why color is not a valid Euclidean distance metric.","PeriodicalId":218110,"journal":{"name":"2012 Western New York Image Processing Workshop","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Western New York Image Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYIPW.2012.6466642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Using a metric feature space for pattern recognition, data mining, and machine learning greatly simplifies the mathematics because distances are preserved under rotation and translation in feature space. A metric space also provides a “ruler”, or absolute measure of how different two feature vectors are. In the computer vision community color can easily be miss-treated as a metric distance. This paper serves as an introduction to why using a non-metric space is a challenge, and provides details of why color is not a valid Euclidean distance metric.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
颜色并不是一个度量空间,它暗示着模式识别、机器学习和计算机视觉
度量空间还提供了一个“标尺”,或者是两个特征向量差异的绝对度量。在计算机视觉界,颜色很容易被误认为是度量距离。本文介绍了为什么使用非度量空间是一个挑战,并提供了为什么颜色不是一个有效的欧几里得距离度量的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sphere2: Jerry's rig, an OpenGL application for non-linear panorama viewing and interaction Lightweight, low-cost, side-mounted mobile eye tracking system A multi-channel approach for segmentation of solar corona in images from the solar dynamics observatory Detecting hand-palm orientation and hand shapes for sign language gesture recognition using 3D images Efficient SMQT features for snow-based classification on face detection and character recognition tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1