A Document Classification System Using Modified ECCD and Category Weight for each Document

Chungseok Han, Sang-Yong Park, Soowon Lee
{"title":"A Document Classification System Using Modified ECCD and Category Weight for each Document","authors":"Chungseok Han, Sang-Yong Park, Soowon Lee","doi":"10.3745/KIPSTB.2012.19B.4.237","DOIUrl":null,"url":null,"abstract":"Web information service needs a document classification system for efficient management and conveniently searches. Existing document classification systems have a problem of low accuracy in classification, if a few number of feature words is selected in documents or if the number of documents that belong to a specific category is excessively large. To solve this problem, we propose a document classification system using `Modified ECCD` feature selection method and `Category Weight for each Document`. Experimental results show that the `Modified ECCD` feature selection method has higher accuracy in classification than and the ECCD method. Moreover, combining the `Category Weight for each Document` feature value and `Modified ECCD` feature selection method results better accuracy in classification.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2012.19B.4.237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Web information service needs a document classification system for efficient management and conveniently searches. Existing document classification systems have a problem of low accuracy in classification, if a few number of feature words is selected in documents or if the number of documents that belong to a specific category is excessively large. To solve this problem, we propose a document classification system using `Modified ECCD` feature selection method and `Category Weight for each Document`. Experimental results show that the `Modified ECCD` feature selection method has higher accuracy in classification than and the ECCD method. Moreover, combining the `Category Weight for each Document` feature value and `Modified ECCD` feature selection method results better accuracy in classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于改进ECCD和类别权重的文档分类系统
Web信息服务需要一个文档分类系统来实现高效的管理和方便的检索。现有的文档分类系统存在分类准确率低的问题,如果在文档中选择的特征词数量很少,或者属于特定类别的文档数量过大。为了解决这一问题,我们提出了一种使用“改进ECCD”特征选择方法和“每个文档的类别权重”的文档分类系统。实验结果表明,“改进的ECCD”特征选择方法在分类上具有更高的准确率。此外,将“每个文档的类别权重”特征值与“改进的ECCD”特征选择方法相结合,可以提高分类的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Query Expansion Based on Word Graphs Using Pseudo Non-Relevant Documents and Term Proximity Morpheme Recovery Based on Naïve Bayes Model Automatic Identification of the Lumen Border in Intravascular Ultrasound Images Retrieval Model Based on Word Translation Probabilities and the Degree of Association of Query Concept Multidimensional Optimization Model of Music Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1