Participatory Risk Management in the Smart City

Levent Görgü, M. O'Grady, E. Mangina, Gregory M. P. O'Hare
{"title":"Participatory Risk Management in the Smart City","authors":"Levent Görgü, M. O'Grady, E. Mangina, Gregory M. P. O'Hare","doi":"10.1109/ISC255366.2022.9922040","DOIUrl":null,"url":null,"abstract":"Citizen observations can strengthen regional and national risk management systems enabling geohazard risk prevention. Implementation of innovative ways following User-Centered Design (UCD) and User-Driven Development (UDD) concepts for gathering information about a geohazard via applications running on citizens' portable devices are still a novel area in citizen science. Enabling citizens to help observe and be engaged with their environment opens the opportunity to collect low-cost and considerable amounts of data in a brief amount of time. AGEO (Platform for Atlantic Geohazard Risk Management) aims to collaborate with local communities and local government authorities to encourage active participation in risk preparedness and monitoring. This paper presents the AGEO platform and mobile Citizen Observatory application. Our initial experiences and the early results of a usability evaluation survey on collecting data for eight types of hazards are presented. This will inform the formulation of recommendations for creating future citizen observatories in the disaster management domain.","PeriodicalId":277015,"journal":{"name":"2022 IEEE International Smart Cities Conference (ISC2)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC255366.2022.9922040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Citizen observations can strengthen regional and national risk management systems enabling geohazard risk prevention. Implementation of innovative ways following User-Centered Design (UCD) and User-Driven Development (UDD) concepts for gathering information about a geohazard via applications running on citizens' portable devices are still a novel area in citizen science. Enabling citizens to help observe and be engaged with their environment opens the opportunity to collect low-cost and considerable amounts of data in a brief amount of time. AGEO (Platform for Atlantic Geohazard Risk Management) aims to collaborate with local communities and local government authorities to encourage active participation in risk preparedness and monitoring. This paper presents the AGEO platform and mobile Citizen Observatory application. Our initial experiences and the early results of a usability evaluation survey on collecting data for eight types of hazards are presented. This will inform the formulation of recommendations for creating future citizen observatories in the disaster management domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智慧城市中的参与式风险管理
公民观察可以加强区域和国家风险管理系统,从而实现地质灾害风险预防。在公民科学中,遵循以用户为中心的设计(UCD)和用户驱动的开发(UDD)概念,通过运行在公民便携式设备上的应用程序来收集有关地质灾害的信息的创新方法的实施仍然是一个新的领域。使公民能够帮助观察和参与他们的环境,为在短时间内收集低成本和大量数据提供了机会。AGEO(大西洋地质灾害风险管理平台)旨在与地方社区和地方政府当局合作,鼓励积极参与风险准备和监测。本文介绍了AGEO平台和移动公民天文台应用。我们的初步经验和初步结果的可用性评估调查收集数据的八种类型的危害。这将为制定在灾害管理领域建立未来公民观测站的建议提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Technology by Older Adults in El Paso, Texas during COVID-19: Purposes, Challenges, and Opportunities Sharing-DNA: a data-driven tool to map the attitude towards sharing services across Europe Development of Hybrid Photovoltaic-based Nanogrids for the Energy Rehabilitation of Public Buildings: The BERLIN Project Advanced Short-Term Net Load Forecasting for Renewable-Based Microgrids Multiple Pedestrian Tracking Framework using Deep Learning-based Multiscale Image Analysis for Stationary-camera Video Surveillance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1