{"title":"Finite Time Stability of Discrete-Time Stochastic Dynamical Systems","authors":"Junsoo Lee, W. Haddad, S. Bhat","doi":"10.1109/CDC45484.2021.9682856","DOIUrl":null,"url":null,"abstract":"In this paper, we address finite time stability in probability of discrete-time stochastic dynamical systems. Specifically, a stochastic comparison lemma is constructed along with a scalar system involving a generalized deadzone function to establish almost sure convergence and finite time stability in probability. This result is used to provide Lyapunov theorems for finite time stability in probability for Ito-type ^ stationary nonlinear stochastic difference equations involving conditions on the minimum of the Lyapunov function itself along with a fractional power of the Lyapunov function. In addition, we establish sufficient conditions for almost sure lower semicontinuity of the stochastic settling-time capturing the average settling time behavior of the discrete-time nonlinear stochastic dynamical system.","PeriodicalId":229089,"journal":{"name":"2021 60th IEEE Conference on Decision and Control (CDC)","volume":"33 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 60th IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC45484.2021.9682856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we address finite time stability in probability of discrete-time stochastic dynamical systems. Specifically, a stochastic comparison lemma is constructed along with a scalar system involving a generalized deadzone function to establish almost sure convergence and finite time stability in probability. This result is used to provide Lyapunov theorems for finite time stability in probability for Ito-type ^ stationary nonlinear stochastic difference equations involving conditions on the minimum of the Lyapunov function itself along with a fractional power of the Lyapunov function. In addition, we establish sufficient conditions for almost sure lower semicontinuity of the stochastic settling-time capturing the average settling time behavior of the discrete-time nonlinear stochastic dynamical system.