{"title":"Incremental-LDI for multi-view coding","authors":"V. Jantet, L. Morin, C. Guillemot","doi":"10.1109/3DTV.2009.5069647","DOIUrl":null,"url":null,"abstract":"This paper describes an Incremental algorithm for Layer Depth Image construction (I-LDI) from multi-view plus depth data sets. A solution to sampling artifacts is proposed, based on pixel interpolation (inpainting) restricted to isolated unknown pixels. A solution to ghosting artifacts is also proposed, based on a depth discontinuity detection, followed by a local foreground / background classification. We propose a formulation of warping equations which reduces time consumption, specifically for LDI warping. Tests on Breakdancers and Ballet MVD data sets show that extra layers in I-LDI contain only 10% of first layer pixels, compared to 50% for LDI. I-LDI Layers are also more compact, with a less spread pixel distribution, and thus easier to compress than LDI Visual rendering is of similar quality with I-LDI and LDI.","PeriodicalId":230128,"journal":{"name":"2009 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video","volume":"33 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DTV.2009.5069647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
This paper describes an Incremental algorithm for Layer Depth Image construction (I-LDI) from multi-view plus depth data sets. A solution to sampling artifacts is proposed, based on pixel interpolation (inpainting) restricted to isolated unknown pixels. A solution to ghosting artifacts is also proposed, based on a depth discontinuity detection, followed by a local foreground / background classification. We propose a formulation of warping equations which reduces time consumption, specifically for LDI warping. Tests on Breakdancers and Ballet MVD data sets show that extra layers in I-LDI contain only 10% of first layer pixels, compared to 50% for LDI. I-LDI Layers are also more compact, with a less spread pixel distribution, and thus easier to compress than LDI Visual rendering is of similar quality with I-LDI and LDI.