Pentamode Metamaterials under Dynamic Loading

V. Skripnyak, M. Chirkov, E. Skripnyak, V. Skripnyak
{"title":"Pentamode Metamaterials under Dynamic Loading","authors":"V. Skripnyak, M. Chirkov, E. Skripnyak, V. Skripnyak","doi":"10.1109/EFRE47760.2020.9242159","DOIUrl":null,"url":null,"abstract":"The field of metamaterials has grown considerably in the last few decades due to the advances in new manufacturing technologies. Metamaterials currently are of interest for a wide variety of applications including damping systems. This work is aimed to evaluate dissipative effect of pentamode metamaterials subjected to dynamic loading. The results of numerical modelling of the mechanical behavior of pentamode metamaterials from alpha titanium alloys are received and compared with available experimental data. The model of inelastic deformation and ductile damage criterion are used to describe the ductility of the unit cell of metamaterials in a wide range of strain rates, temperature and stress triaxiality. A methodology for analyzing the energy dissipation due to inelastic deformation of metamaterials at high strain rates is presented. It is shown that the values of the energy dissipation coefficient during uniaxial dynamic compression of the pentamode metamaterial are 1.5 times higher than for the bulk alloy counterpart.","PeriodicalId":190249,"journal":{"name":"2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE)","volume":"231 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EFRE47760.2020.9242159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The field of metamaterials has grown considerably in the last few decades due to the advances in new manufacturing technologies. Metamaterials currently are of interest for a wide variety of applications including damping systems. This work is aimed to evaluate dissipative effect of pentamode metamaterials subjected to dynamic loading. The results of numerical modelling of the mechanical behavior of pentamode metamaterials from alpha titanium alloys are received and compared with available experimental data. The model of inelastic deformation and ductile damage criterion are used to describe the ductility of the unit cell of metamaterials in a wide range of strain rates, temperature and stress triaxiality. A methodology for analyzing the energy dissipation due to inelastic deformation of metamaterials at high strain rates is presented. It is shown that the values of the energy dissipation coefficient during uniaxial dynamic compression of the pentamode metamaterial are 1.5 times higher than for the bulk alloy counterpart.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态加载下的五模超材料
在过去的几十年里,由于新的制造技术的进步,超材料领域有了相当大的发展。目前,超材料在包括阻尼系统在内的广泛应用中引起了人们的兴趣。研究了五模超材料在动态载荷作用下的耗散效应。对α钛合金五模超材料的力学行为进行了数值模拟,并与已有的实验数据进行了比较。采用非弹性变形模型和延性损伤准则来描述超材料在应变速率、温度和应力三轴范围内的延性。提出了一种分析超材料在高应变率下非弹性变形所引起的能量耗散的方法。结果表明,在单轴动态压缩过程中,五模态超材料的能量耗散系数比块体合金高1.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New Materials and Coatings for Nuclear Technology Higher Harmonics in the Output Spectrum of Microwave Sources Based on Nonlaminar Electron Beams (Analysis of the Effect of Transverse and Longitudinal Bunches of the Space Charge) Pulse Source of Electrons Based on the Pyroeffect Features of the Synthesis of TiCAl (Fe2O3/TiO2) Metal Matrix Composites under Nonequilibrium Conditions Volume Discharges in CO2-Laser Mixtures at Atmospheric Pressures With High Energy Density
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1