Free-space optical communications with peak and average constraints: High SNR capacity approximation

A. Chaaban, J. Morvan, Mohamed-Slim Alouini
{"title":"Free-space optical communications with peak and average constraints: High SNR capacity approximation","authors":"A. Chaaban, J. Morvan, Mohamed-Slim Alouini","doi":"10.1109/IWOW.2015.7342269","DOIUrl":null,"url":null,"abstract":"The capacity of the intensity-modulation direct-detection (IM-DD) free-space optical channel with both average and peak intensity constraints is studied. A new capacity lower bound is derived by using a truncated-Gaussian input distribution. Numerical evaluation shows that this capacity lower bound is nearly tight at high signal-to-noise ratio (SNR), while it is shown analytically that the gap to capacity upper bounds is a small constant at high SNR. In particular, the gap to the high-SNR asymptotic capacity of the channel under either a peak or an average constraint is small. This leads to a simple approximation of the high SNR capacity. Additionally, a new capacity upper bound is derived using sphere-packing arguments. This bound is tight at high SNR for a channel with a dominant peak constraint.","PeriodicalId":247164,"journal":{"name":"2015 4th International Workshop on Optical Wireless Communications (IWOW)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 4th International Workshop on Optical Wireless Communications (IWOW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOW.2015.7342269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The capacity of the intensity-modulation direct-detection (IM-DD) free-space optical channel with both average and peak intensity constraints is studied. A new capacity lower bound is derived by using a truncated-Gaussian input distribution. Numerical evaluation shows that this capacity lower bound is nearly tight at high signal-to-noise ratio (SNR), while it is shown analytically that the gap to capacity upper bounds is a small constant at high SNR. In particular, the gap to the high-SNR asymptotic capacity of the channel under either a peak or an average constraint is small. This leads to a simple approximation of the high SNR capacity. Additionally, a new capacity upper bound is derived using sphere-packing arguments. This bound is tight at high SNR for a channel with a dominant peak constraint.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有峰值和平均约束的自由空间光通信:高信噪比容量近似
研究了平均强度约束和峰值强度约束下的强度调制直接检测自由空间光通道的容量。利用截断高斯输入分布导出了一个新的容量下界。数值计算表明,在高信噪比时,该容量下界几乎是紧的,而在高信噪比时,与容量上界的差距是一个很小的常数。特别是,在峰值或平均约束下,信道与高信噪比渐近容量的差距很小。这导致了高信噪比容量的简单近似。此外,利用球填充参数导出了新的容量上界。对于具有主导峰约束的信道,该界限在高信噪比下是紧密的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance of carrier-less amplitude and phase modulation with frequency domain equalization for indoor visible light communications Free space optical communication with spatial diversity based on orbital angular momentum of light A real-time platform for collaborative research on Visible Light Communication Effects of focused and collimated laser beams on the performance of underwater wireless optical communication links SEP analysis of FSO system employing SIM-MPSK with noisy phase reference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1