Tracking of cell populations to understand their spatio-temporal behavior in response to physical stimuli

D. House, Matthew L. Walker, Zheng Wu, J. Wong, Margrit Betke
{"title":"Tracking of cell populations to understand their spatio-temporal behavior in response to physical stimuli","authors":"D. House, Matthew L. Walker, Zheng Wu, J. Wong, Margrit Betke","doi":"10.1109/CVPRW.2009.5204057","DOIUrl":null,"url":null,"abstract":"We have developed methods for segmentation and tracking of cells in time-lapse phase-contrast microscopy images. Our multi-object Bayesian algorithm detects and tracks large numbers of cells in presence of clutter and identifies cell division. To solve the data association problem, the assignment of current measurements to cell tracks, we tested various cost functions with both an optimal and a fast, suboptimal assignment algorithm. We also propose metrics to quantify cell migration properties, such as motility and directional persistence, and compared our findings of cell migration with the standard random walk model. We measured how cell populations respond to the physical stimuli presented in the environment, for example, the stiffness property of the substrate. Our analysis of hundreds of spatio-temporal cell trajectories revealed significant differences in the behavioral response of fibroblast cells to changes in hydrogel conditions.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":" 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

We have developed methods for segmentation and tracking of cells in time-lapse phase-contrast microscopy images. Our multi-object Bayesian algorithm detects and tracks large numbers of cells in presence of clutter and identifies cell division. To solve the data association problem, the assignment of current measurements to cell tracks, we tested various cost functions with both an optimal and a fast, suboptimal assignment algorithm. We also propose metrics to quantify cell migration properties, such as motility and directional persistence, and compared our findings of cell migration with the standard random walk model. We measured how cell populations respond to the physical stimuli presented in the environment, for example, the stiffness property of the substrate. Our analysis of hundreds of spatio-temporal cell trajectories revealed significant differences in the behavioral response of fibroblast cells to changes in hydrogel conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
追踪细胞群,了解它们在物理刺激下的时空行为
我们已经开发了在延时相衬显微镜图像中分割和跟踪细胞的方法。我们的多目标贝叶斯算法检测和跟踪大量存在杂波的细胞,并识别细胞分裂。为了解决数据关联问题,将当前测量值分配给单元轨道,我们使用最优和快速次最优分配算法测试了各种成本函数。我们还提出了量化细胞迁移特性的指标,如运动性和定向持久性,并将我们的细胞迁移发现与标准随机漫步模型进行了比较。我们测量了细胞群对环境中出现的物理刺激的反应,例如,基质的刚度特性。我们对数百个时空细胞轨迹的分析揭示了成纤维细胞对水凝胶条件变化的行为反应的显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1