IMU Based Context Detection of Changes in the Terrain Topography

Taylor Knuth, P. Groves
{"title":"IMU Based Context Detection of Changes in the Terrain Topography","authors":"Taylor Knuth, P. Groves","doi":"10.1109/PLANS53410.2023.10140086","DOIUrl":null,"url":null,"abstract":"This paper introduces an IMU based context machine learning algorithm for terrain topography classification. Four different terrains are considered: concrete, pebble, sand, and grass. The grass terrain is further split into two separate classes based off moisture content of the grass, wet and dry. Separate terrain topography datasets are created by walking on different terrains and logging the data. The subject has been equipped with an IMU attached on the surface of the shoe above the toes. Data is collected and stored via a Bluetooth smartphone controller over multiple recording sessions. Acceleration, angular rate, and magnetic field were recorded. The recorded data is extracted in two second sliding window intervals, whereupon the magnitude of the sensor outputs, in three dimensions, is calculated. A low-pass band filter is also applied to the magnitude for the acceleration, angular rate, and magnetic field data. The magnitude output is processed in the time domain to calculate variance, energy, kurtosis, range, skewness, and the zero-crossing rate. The magnitude data is converted into the frequency domain and the peak magnitude and its corresponding frequency in the sliding window are determined. A set of 44 features is extracted from each window and then tested and trained to classify terrain topography using five different machine learning methods: Artificial Neural Network, Decision Tree, k-Nearest Neighbor, Naive-Bayes, and Support Vector Machine. The 44-feature set is optimized using a wrapper selection algorithm for the Decision Tree and k-Nearest Neighbor algorithms. The results show that by utilizing sensor data from an IMU in combination with machine learning methods a terrain topography classification algorithm can accurately predict various terrains over which the user traverses.","PeriodicalId":344794,"journal":{"name":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS53410.2023.10140086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an IMU based context machine learning algorithm for terrain topography classification. Four different terrains are considered: concrete, pebble, sand, and grass. The grass terrain is further split into two separate classes based off moisture content of the grass, wet and dry. Separate terrain topography datasets are created by walking on different terrains and logging the data. The subject has been equipped with an IMU attached on the surface of the shoe above the toes. Data is collected and stored via a Bluetooth smartphone controller over multiple recording sessions. Acceleration, angular rate, and magnetic field were recorded. The recorded data is extracted in two second sliding window intervals, whereupon the magnitude of the sensor outputs, in three dimensions, is calculated. A low-pass band filter is also applied to the magnitude for the acceleration, angular rate, and magnetic field data. The magnitude output is processed in the time domain to calculate variance, energy, kurtosis, range, skewness, and the zero-crossing rate. The magnitude data is converted into the frequency domain and the peak magnitude and its corresponding frequency in the sliding window are determined. A set of 44 features is extracted from each window and then tested and trained to classify terrain topography using five different machine learning methods: Artificial Neural Network, Decision Tree, k-Nearest Neighbor, Naive-Bayes, and Support Vector Machine. The 44-feature set is optimized using a wrapper selection algorithm for the Decision Tree and k-Nearest Neighbor algorithms. The results show that by utilizing sensor data from an IMU in combination with machine learning methods a terrain topography classification algorithm can accurately predict various terrains over which the user traverses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于IMU的地形变化上下文检测
介绍了一种基于IMU的地形分类上下文机器学习算法。考虑了四种不同的地形:混凝土、卵石、沙子和草地。草地地形根据草的含水量进一步分为两类,湿的和干的。通过在不同的地形上行走并记录数据来创建单独的地形地形数据集。受试者在脚趾上方的鞋子表面安装了一个IMU。数据通过蓝牙智能手机控制器在多个录音会话中收集和存储。记录加速度、角速度和磁场。记录的数据在两秒的滑动窗口间隔中提取,然后在三维中计算传感器输出的幅度。一个低通带滤波器也适用于加速度,角速度和磁场数据的幅度。在时域中处理幅度输出以计算方差、能量、峰度、范围、偏度和过零率。将震级数据转换为频域,确定滑动窗口内的峰值震级及其对应的频率。从每个窗口提取一组44个特征,然后使用五种不同的机器学习方法进行测试和训练,以分类地形地形:人工神经网络,决策树,k-近邻,朴素贝叶斯和支持向量机。使用决策树和k近邻算法的包装选择算法对44个特征集进行了优化。结果表明,利用IMU的传感器数据与机器学习方法相结合,地形地形分类算法可以准确地预测用户所经过的各种地形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulations using LEO-PNT systems: A Brief Survey Signal Mode Transition Detection in Starlink LEO Satellite Downlink Signals Terrain-Relative Navigation with Neuro-Inspired Elevation Encoding Random Finite Set Approach to Signal Strength Based Passive Localization and Tracking Prediction of Ground Wave Propagation Delays in Terrestrial Radio Navigation Systems Based on Soil Texture Maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1