Generative Ensemble Learning for Mitigating Adversarial Malware Detection in IoT

Usman Ahmed, Chun-Wei Lin, Gautam Srivastava
{"title":"Generative Ensemble Learning for Mitigating Adversarial Malware Detection in IoT","authors":"Usman Ahmed, Chun-Wei Lin, Gautam Srivastava","doi":"10.1109/ICNP52444.2021.9651917","DOIUrl":null,"url":null,"abstract":"This paper proposes a framework that can be employed to mitigate adversarial evasion attacks on Android malware classifiers. It extracts multiple discriminating feature subsets from a single Android app such that each subset has the potential to classify a huge dataset of malicious and benign Android apps independently. Moreover, it incorporates an ensemble of ML classifiers where each classifier is trained on different features subset. Finally, the ensemble model formulates a collaborative classification decision that is resilient against adversarial evasion attacks. Results showed that the designed model achieves good performance compared to the existing models.","PeriodicalId":343813,"journal":{"name":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP52444.2021.9651917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a framework that can be employed to mitigate adversarial evasion attacks on Android malware classifiers. It extracts multiple discriminating feature subsets from a single Android app such that each subset has the potential to classify a huge dataset of malicious and benign Android apps independently. Moreover, it incorporates an ensemble of ML classifiers where each classifier is trained on different features subset. Finally, the ensemble model formulates a collaborative classification decision that is resilient against adversarial evasion attacks. Results showed that the designed model achieves good performance compared to the existing models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网中对抗恶意软件检测的生成集成学习
本文提出了一个框架,可以用来减轻对Android恶意软件分类器的对抗性规避攻击。它从单个Android应用程序中提取多个区分特征子集,这样每个子集都有可能独立地对恶意和良性Android应用程序的庞大数据集进行分类。此外,它结合了一个ML分类器的集合,其中每个分类器在不同的特征子集上进行训练。最后,集成模型制定了一个协作分类决策,该决策对对抗性规避攻击具有弹性。结果表明,与现有模型相比,所设计的模型具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploiting WiFi AP for Simultaneous Data Dissemination among WiFi and ZigBee Devices Highway On-Ramp Merging for Mixed Traffic: Recent Advances and Future Trends Generalizable and Interpretable Deep Learning for Network Congestion Prediction DNSonChain: Delegating Privacy-Preserved DNS Resolution to Blockchain ISP Self-Operated BGP Anomaly Detection Based on Weakly Supervised Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1