Autoencoders and AutoML for intrusion detection

A. Glavan, V. Croitoru
{"title":"Autoencoders and AutoML for intrusion detection","authors":"A. Glavan, V. Croitoru","doi":"10.1109/ECAI58194.2023.10194229","DOIUrl":null,"url":null,"abstract":"Industrial internet of things and operational technology (IIoT/OT) lead the edge use case implementations. 5G and multi-access edge computing (MEC) offer the means to implement IIoT scenarios, ensuring business growth and deployment protection against network attacks. A variation of MEC and IIoT security measures are studied in the literature, and intrusion detection solutions are consequently proposed - including machine learning based solutions for anomaly detection. Automated machine learning (autoML) frameworks aim to create high accuracy models for users with little expertise in machine learning. This paper suggests autoencoders to improve autoML best model performance on a learning task: binary classification of network traffic. The experiment was performed on a benchmark dataset with intrusion detection examples: Network Security Laboratory - Knowledge Discovery in Databases (NSL-KDD). In order to optimize the learning process, autoencoders are suggested for feature encoding. The approach presented in this paper achieves a 4% increase in model accuracy and lower training time, when compared to the AutoML baseline model.","PeriodicalId":391483,"journal":{"name":"2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECAI58194.2023.10194229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Industrial internet of things and operational technology (IIoT/OT) lead the edge use case implementations. 5G and multi-access edge computing (MEC) offer the means to implement IIoT scenarios, ensuring business growth and deployment protection against network attacks. A variation of MEC and IIoT security measures are studied in the literature, and intrusion detection solutions are consequently proposed - including machine learning based solutions for anomaly detection. Automated machine learning (autoML) frameworks aim to create high accuracy models for users with little expertise in machine learning. This paper suggests autoencoders to improve autoML best model performance on a learning task: binary classification of network traffic. The experiment was performed on a benchmark dataset with intrusion detection examples: Network Security Laboratory - Knowledge Discovery in Databases (NSL-KDD). In order to optimize the learning process, autoencoders are suggested for feature encoding. The approach presented in this paper achieves a 4% increase in model accuracy and lower training time, when compared to the AutoML baseline model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于入侵检测的自动编码器和AutoML
工业物联网和运营技术(IIoT/OT)引领着边缘用例的实现。5G和多接入边缘计算(MEC)提供了实现工业物联网场景的手段,确保业务增长和部署保护免受网络攻击。文献中研究了MEC和IIoT安全措施的变化,并因此提出了入侵检测解决方案-包括基于机器学习的异常检测解决方案。自动化机器学习(autoML)框架旨在为缺乏机器学习专业知识的用户创建高精度模型。本文建议使用自编码器来提高autoML在网络流量二进制分类学习任务上的最佳模型性能。实验是在一个带有入侵检测示例的基准数据集上进行的:网络安全实验室-数据库中的知识发现(NSL-KDD)。为了优化学习过程,建议采用自编码器进行特征编码。与AutoML基线模型相比,本文提出的方法使模型精度提高了4%,并且减少了训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unveiling Threats: Leveraging User Behavior Analysis for Enhanced Cybersecurity Optimal Placement and Sizing of Static Var Compensators in Radial Distribution Networks Using Artificial Intelligence Techniques Electro-Thermal Equivalent Circuit of Lithium-Ion Battery Using COMSOL The dimensions balance of the energy trilemma and the current energy crisis Remaining Useful Life Prediction Method for the Rolling Element of an Electrical Machine Using Linear Regression Analysis of the Vibration Signal of a Faulted Bearing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1