{"title":"Mathematical Modeling Investigation of V+5 Ion Removal from Wastewater by Nanographene Oxide","authors":"H. Mh","doi":"10.23880/ppej-16000336","DOIUrl":null,"url":null,"abstract":"The objective of this work is to remove Vanadium V+5 ions from wastewater by batch adsorption utilizing Nano Graphene Oxide (NGO) since Vanadium presents a hazardous concern due to its effect on biological systems; According to the International Agency for Research on Cancer (IARC), vanadium V+5 ions are a potential human carcinogen. In the adsorption process, the effects of temperature (20-50)°C and initial concentration effect (100-800) mg L-1 were investigated. The adsorption isotherms were identified using a simulated aqueous solution of the V+5 ions and a kinetic and thermodynamic sorption analysis. Both the Langmuir and Freundlich isotherm models were used to fit the data. Due to the correlation coefficient (R2) of 0.999, analyses showed that the Adsorption of V+5 ions by NGO followed the Langmuir model. Kinetic models analyzed Intra Particle Diffusion, Pseudo First & Second Order Models revealed that an Intra-Particle Diffusion model was followed. Thermodynamically, The Adsorption processes were exothermic, random, and spontaneous, all shown by the negative values for Enthalpy ∆H, Entropy ∆S, and Gibbs free Energy ∆G.","PeriodicalId":282073,"journal":{"name":"Petroleum & Petrochemical Engineering Journal","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum & Petrochemical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23880/ppej-16000336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this work is to remove Vanadium V+5 ions from wastewater by batch adsorption utilizing Nano Graphene Oxide (NGO) since Vanadium presents a hazardous concern due to its effect on biological systems; According to the International Agency for Research on Cancer (IARC), vanadium V+5 ions are a potential human carcinogen. In the adsorption process, the effects of temperature (20-50)°C and initial concentration effect (100-800) mg L-1 were investigated. The adsorption isotherms were identified using a simulated aqueous solution of the V+5 ions and a kinetic and thermodynamic sorption analysis. Both the Langmuir and Freundlich isotherm models were used to fit the data. Due to the correlation coefficient (R2) of 0.999, analyses showed that the Adsorption of V+5 ions by NGO followed the Langmuir model. Kinetic models analyzed Intra Particle Diffusion, Pseudo First & Second Order Models revealed that an Intra-Particle Diffusion model was followed. Thermodynamically, The Adsorption processes were exothermic, random, and spontaneous, all shown by the negative values for Enthalpy ∆H, Entropy ∆S, and Gibbs free Energy ∆G.