MoneyBall - Data Mining on Cricket Dataset

D. Thenmozhi, P. Mirunalini, S. M. Jaisakthi, Srivatsan Vasudevan, V. Veeramani Kannan, S. Sagubar Sadiq
{"title":"MoneyBall - Data Mining on Cricket Dataset","authors":"D. Thenmozhi, P. Mirunalini, S. M. Jaisakthi, Srivatsan Vasudevan, V. Veeramani Kannan, S. Sagubar Sadiq","doi":"10.1109/ICCIDS.2019.8862065","DOIUrl":null,"url":null,"abstract":"Cricket is one of the most popular sports in the whole world, and also one of the most popular sports in India. Cricketing events such as the Indian Premier League (IPL) are thoroughly enjoyed by fans all across the country. Fans of the game love predicting the ongoing match results, and this is something that has ended up being a hobby for several people who follow the game. This is a sport with abundant amount of data and using this data, we can make an evaluation on whether a team can win an ongoing IPL match or not. This prediction is implemented by using machine learning algorithms such as Gaussian Naive Bayes, Support Vector Machine, K-Nearest Neighbor and Random Forest. The required dataset is obtained by collecting using a website and consolidated. As a result, the output is obtained which lists whether the home team has won the match or not. The accuracies obtained are 75%, 80%, 55%, 75%, 80%, 80%, 75% and 84% for the teams CSK, RR, DD, RCB, MI, SRH, KXIP and KKR respectively.","PeriodicalId":196915,"journal":{"name":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIDS.2019.8862065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Cricket is one of the most popular sports in the whole world, and also one of the most popular sports in India. Cricketing events such as the Indian Premier League (IPL) are thoroughly enjoyed by fans all across the country. Fans of the game love predicting the ongoing match results, and this is something that has ended up being a hobby for several people who follow the game. This is a sport with abundant amount of data and using this data, we can make an evaluation on whether a team can win an ongoing IPL match or not. This prediction is implemented by using machine learning algorithms such as Gaussian Naive Bayes, Support Vector Machine, K-Nearest Neighbor and Random Forest. The required dataset is obtained by collecting using a website and consolidated. As a result, the output is obtained which lists whether the home team has won the match or not. The accuracies obtained are 75%, 80%, 55%, 75%, 80%, 80%, 75% and 84% for the teams CSK, RR, DD, RCB, MI, SRH, KXIP and KKR respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MoneyBall -对板球数据集的数据挖掘
板球是世界上最受欢迎的运动之一,也是印度最受欢迎的运动之一。印度板球超级联赛(IPL)等板球赛事深受全国各地球迷的喜爱。这款游戏的粉丝喜欢预测正在进行的比赛结果,这最终成为一些关注这款游戏的人的爱好。这是一项拥有大量数据的运动,使用这些数据,我们可以对一支球队是否能够赢得正在进行的IPL比赛进行评估。这种预测是通过使用机器学习算法,如高斯朴素贝叶斯,支持向量机,k近邻和随机森林来实现的。需要的数据集是通过网站收集和整合得到的。结果,输出将列出主队是否赢得了比赛。CSK、RR、DD、RCB、MI、SRH、KXIP和KKR的准确率分别为75%、80%、55%、75%、80%、80%、75%和84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Region Based Convolutional Neural Network for Human-Elephant Conflict Management System A Comparison of Regression Models for Prediction of Graduate Admissions Feature selection with LASSO and VSURF to model mechanical properties for investment casting Med-Recommender System for Predictive Analysis of Hospitals and Doctors Analysis of Facial Landmark Features to determine the best subset for finding Face Orientation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1