Cloud-based clustering of text documents using the GHSOM algorithm on the GridGain platform

M. Sarnovský, Z. Ulbrik
{"title":"Cloud-based clustering of text documents using the GHSOM algorithm on the GridGain platform","authors":"M. Sarnovský, Z. Ulbrik","doi":"10.1109/SACI.2013.6608988","DOIUrl":null,"url":null,"abstract":"This paper provides an overview of our research activities aimed on efficient use of distributed computing concepts for text-mining tasks. Work presented within this paper describes the GHSOM (Growing Hierarchical Self-Organizing Maps) algorithm for clustering of text documents and proposes the design and implementation of distributed version of this approach. Proposed implementation is based on JBOWL framework as a base for text mining. For distribution we used MapReduce paradigm implemented within the GridGain framework, which was used as a cloud application platform. Experiments were performed on standard Reuters dataset and for testing purposes we decided to use a simple private cloud infrastructure.","PeriodicalId":304729,"journal":{"name":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2013.6608988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper provides an overview of our research activities aimed on efficient use of distributed computing concepts for text-mining tasks. Work presented within this paper describes the GHSOM (Growing Hierarchical Self-Organizing Maps) algorithm for clustering of text documents and proposes the design and implementation of distributed version of this approach. Proposed implementation is based on JBOWL framework as a base for text mining. For distribution we used MapReduce paradigm implemented within the GridGain framework, which was used as a cloud application platform. Experiments were performed on standard Reuters dataset and for testing purposes we decided to use a simple private cloud infrastructure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GridGain平台上使用GHSOM算法的文本文档云聚类
本文概述了我们的研究活动,旨在有效地使用分布式计算概念进行文本挖掘任务。本文介绍的工作描述了用于文本文档聚类的GHSOM(增长层次自组织地图)算法,并提出了该方法的分布式版本的设计和实现。建议的实现是基于JBOWL框架作为文本挖掘的基础。对于分发,我们使用了在GridGain框架内实现的MapReduce范式,该框架被用作云应用平台。实验是在标准的路透社数据集上进行的,出于测试目的,我们决定使用一个简单的私有云基础设施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
V/f control strategy with constant power factor for SPMSM drives, with experiments Spline filtering in accordance to ISO/TS 16610: ANSI C-code for engineers HITS based network algorithm for evaluating the professional skills of wine tasters Performance evaluation of a face detection algorithm running on general purpose operating systems Tumor growth model identification and analysis in case of C38 colon adenocarcinoma and B16 melanoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1