Hierarchical face modeling and fast 3D facial expression synthesis

Yu Zhang, E. Prakash, E. Sung
{"title":"Hierarchical face modeling and fast 3D facial expression synthesis","authors":"Yu Zhang, E. Prakash, E. Sung","doi":"10.1109/SIBGRA.2002.1167166","DOIUrl":null,"url":null,"abstract":"This paper presents a new hierarchical facial model that conforms to the human anatomy for realistic and fast 3D facial expression synthesis. The facial model has a skin/muscle/skull structure. The deformable skin model uses a kind of nonlinear spring to directly simulate the nonlinear visco-elastic behavior of soft tissue, and a new kind of edge repulsion spring is developed to prevent model collapse. The incorporation of the skull extends the scope of facial motion and facilitates facial muscle construction. The construction of facial muscles is achieved by using an efficient muscle mapping approach that ensures different muscles to be located at the anatomically correct positions. For computational efficiency, we devise an adaptive simulation algorithm which uses either a semi-implicit integration scheme or a quasi-static solver to compute the relaxation by traversing the designed data structures in a breadth-first order. The algorithm runs in real-time and has successfully synthesized realistic facial expressions.","PeriodicalId":286814,"journal":{"name":"Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRA.2002.1167166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents a new hierarchical facial model that conforms to the human anatomy for realistic and fast 3D facial expression synthesis. The facial model has a skin/muscle/skull structure. The deformable skin model uses a kind of nonlinear spring to directly simulate the nonlinear visco-elastic behavior of soft tissue, and a new kind of edge repulsion spring is developed to prevent model collapse. The incorporation of the skull extends the scope of facial motion and facilitates facial muscle construction. The construction of facial muscles is achieved by using an efficient muscle mapping approach that ensures different muscles to be located at the anatomically correct positions. For computational efficiency, we devise an adaptive simulation algorithm which uses either a semi-implicit integration scheme or a quasi-static solver to compute the relaxation by traversing the designed data structures in a breadth-first order. The algorithm runs in real-time and has successfully synthesized realistic facial expressions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分层人脸建模和快速三维人脸表情合成
本文提出了一种符合人体解剖结构的分层人脸模型,以实现真实快速的三维人脸表情合成。面部模型具有皮肤/肌肉/头骨结构。变形皮肤模型采用一种非线性弹簧来直接模拟软组织的非线性粘弹性行为,并开发了一种新型的边缘排斥弹簧来防止模型崩溃。颅骨的结合扩大了面部运动的范围,促进了面部肌肉的构造。面部肌肉的构造是通过使用有效的肌肉映射方法来实现的,该方法确保不同的肌肉位于解剖学上正确的位置。为了提高计算效率,我们设计了一种自适应仿真算法,该算法使用半隐式积分方案或准静态求解器,通过以宽度优先顺序遍历设计的数据结构来计算松弛。该算法实时运行,并成功合成了逼真的面部表情。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spherical maps visualization Texture feature neural classifier for remote sensing image retrieval systems Visualizing inner structures in multimodal volume data Linear features detection in SAR images for urban analysis Towards point-based acquisition and rendering of large real-world environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1