Neural network learning of spectral features of nonverbal speech

S. Lerner, J. Deller
{"title":"Neural network learning of spectral features of nonverbal speech","authors":"S. Lerner, J. Deller","doi":"10.1109/NEBC.1988.19339","DOIUrl":null,"url":null,"abstract":"A neural-network approach to the learning of invariant spectral features in cerebral-palsied speech is introduced. The technique is a hybrid conventional digital signal processing/neural network strategy. The objective at this stage is to learn features of nonverbal speech, and to do so in a manner which is robust to the abnormalities of such speech and which is minimally dependent on a priori modeling or parameterization. Thus, it is hoped that these features will be useful as input to a higher-level word recognizer.<<ETX>>","PeriodicalId":165980,"journal":{"name":"Proceedings of the 1988 Fourteenth Annual Northeast Bioengineering Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1988 Fourteenth Annual Northeast Bioengineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEBC.1988.19339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A neural-network approach to the learning of invariant spectral features in cerebral-palsied speech is introduced. The technique is a hybrid conventional digital signal processing/neural network strategy. The objective at this stage is to learn features of nonverbal speech, and to do so in a manner which is robust to the abnormalities of such speech and which is minimally dependent on a priori modeling or parameterization. Thus, it is hoped that these features will be useful as input to a higher-level word recognizer.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非言语谱特征的神经网络学习
介绍了一种神经网络方法来学习脑瘫语音的不变谱特征。该技术是一种传统数字信号处理与神经网络的混合策略。这一阶段的目标是学习非言语的特征,并以一种对这种言语的异常具有鲁棒性的方式进行学习,并且最小化地依赖于先验建模或参数化。因此,我们希望这些特征可以作为高级单词识别器的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The dielectric properties of canine and normal and neoplastic splenic tissues Aortic compliance indices in the assessment of hypertension Array sensor for arterial pulse recording-reduction of motion artifact A two dimensional fiber optic eye position sensor for tracking and point-of-gaze measurements Assessment of intracranial pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1