On Learning Associative Relationship Memory among Knowledge Concepts

Zhenping Xie, Kun Wang, Yuan Liu
{"title":"On Learning Associative Relationship Memory among Knowledge Concepts","authors":"Zhenping Xie, Kun Wang, Yuan Liu","doi":"10.2991/ijndc.k.200515.005","DOIUrl":null,"url":null,"abstract":"Knowledge graph is firstly put forward by Google in 2012 [1], which uses graph structure to represent knowledge information on conceptual items. In knowledge graph, each graph node denotes a knowledge concept, and edges equipped with labels represent semantic relations among knowledge nodes. Knowledge graph is a very useful tool to represent and store the information in natural language text, and has been widely and successively applied to natural translation [2], question-answer system [3], and natural language understanding [4].","PeriodicalId":318936,"journal":{"name":"Int. J. Networked Distributed Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Networked Distributed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ijndc.k.200515.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Knowledge graph is firstly put forward by Google in 2012 [1], which uses graph structure to represent knowledge information on conceptual items. In knowledge graph, each graph node denotes a knowledge concept, and edges equipped with labels represent semantic relations among knowledge nodes. Knowledge graph is a very useful tool to represent and store the information in natural language text, and has been widely and successively applied to natural translation [2], question-answer system [3], and natural language understanding [4].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论知识概念间联想记忆的学习
知识图谱(Knowledge graph)最早由Google于2012年提出[1],它采用图形结构来表示概念性项目的知识信息。在知识图中,每个图节点表示一个知识概念,带有标签的边表示知识节点之间的语义关系。知识图是表示和存储自然语言文本中信息的一种非常有用的工具,在自然翻译[2]、问答系统[3]、自然语言理解[4]等领域得到了广泛而先后的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Parameter Tuning for Constructing Storage Tiers in an Autonomous Distributed Storage System Application of 2‑gram and 3‑gram to Obtain Factor Scores of Statements Posted at Q&A Sites Bountychain: Toward Decentralizing a Bug Bounty Program with Blockchain and IPFS Secure Communications by Tit-for-Tat Strategy in Vehicular Networks Vehicle Platooning Systems: Review, Classification and Validation Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1