{"title":"Creating Soft Heterogeneity in Clusters Through Firmware Re-configuration","authors":"Xin Zhan, M. Shoaib, S. Reda","doi":"10.1109/CCGrid.2016.92","DOIUrl":null,"url":null,"abstract":"Customizing server hardware to adapt to its workload has the potential to improve both runtime and energy efficiency. In a cluster that caters to diverse workloads, employing servers with customized hardware components leads to heterogeneity, which is not scalable. In this paper, we seek to create soft heterogeneity from existing servers with homogenous hardware components through customizing the firmware configuration. We demonstrate that firmware configurations have a large impact on runtime, power, and energy efficiency of workloads. Since finding the firmware configuration that minimizes runtime and/or energy efficiency grows exponentially as a function of the number of firmware settings, we propose a methodology called FXplore that helps complete the exploration with a quadratic time complexity. Furthermore, FXplore enables system administrators to manage the degree of the heterogeneity by deriving firmware configurations for sub-clusters that can cater to multiple workloads with similar characteristics. Thus, during online operation, incoming workloads to the cluster can be mapped to appropriate sub-clusters with pre-configured firmware settings. FXplore also finds the best firmware settings in case of co-runners on the same server. We validate our methodology on a fully-instrumented cluster under a large range of parallel workloads that are representative of both high-performance compute clusters and datacenters. Compared to enabling all firmware options, our method improves average runtime and energy consumption by 11% and 15%, respectively.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Customizing server hardware to adapt to its workload has the potential to improve both runtime and energy efficiency. In a cluster that caters to diverse workloads, employing servers with customized hardware components leads to heterogeneity, which is not scalable. In this paper, we seek to create soft heterogeneity from existing servers with homogenous hardware components through customizing the firmware configuration. We demonstrate that firmware configurations have a large impact on runtime, power, and energy efficiency of workloads. Since finding the firmware configuration that minimizes runtime and/or energy efficiency grows exponentially as a function of the number of firmware settings, we propose a methodology called FXplore that helps complete the exploration with a quadratic time complexity. Furthermore, FXplore enables system administrators to manage the degree of the heterogeneity by deriving firmware configurations for sub-clusters that can cater to multiple workloads with similar characteristics. Thus, during online operation, incoming workloads to the cluster can be mapped to appropriate sub-clusters with pre-configured firmware settings. FXplore also finds the best firmware settings in case of co-runners on the same server. We validate our methodology on a fully-instrumented cluster under a large range of parallel workloads that are representative of both high-performance compute clusters and datacenters. Compared to enabling all firmware options, our method improves average runtime and energy consumption by 11% and 15%, respectively.