Enhancement mechanism of impinging atomization by gas injection

C. Inoue, Toshinori Watanabe, T. Himeno, S. Uzawa
{"title":"Enhancement mechanism of impinging atomization by gas injection","authors":"C. Inoue, Toshinori Watanabe, T. Himeno, S. Uzawa","doi":"10.1299/KIKAIB.78.1990","DOIUrl":null,"url":null,"abstract":"Impinging atomization, which has been widely utilized in liquid rocket propulsion systems, is able to produce fine drops at a rated operation. In contrast, however, the atomization characteristics deteriorate under off design conditions when injection velocity comes to be slower. In the present study, for improving atomization characteristics at off design operation, an effective technique is verified utilizing small amount of gas injection. The gas jet is supplied from a pressurized reservoir independent of the liquid supply system, and it is injected from the center of the liquid nozzles toward the impingement point. To clarify the flow field and the mechanism of the effectivity, experimental visualizations, drop size measurements and corresponding numerical analyses are carried out. It is elucidated that atomization is drastically promoted when the dynamic pressure of gas overcomes that of liquid at the impingement point. By the gas injection with the amount of only 1% of liquid mass flow rate, Sauter Mean Diameter (SMD) becomes one-tenth of the original SMD. In addition, the optimized atomization efficiency is achieved when the gas dynamic pressure is twice as much as the liquid at the impingement point.","PeriodicalId":331123,"journal":{"name":"Transactions of the Japan Society of Mechanical Engineers. B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Japan Society of Mechanical Engineers. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/KIKAIB.78.1990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Impinging atomization, which has been widely utilized in liquid rocket propulsion systems, is able to produce fine drops at a rated operation. In contrast, however, the atomization characteristics deteriorate under off design conditions when injection velocity comes to be slower. In the present study, for improving atomization characteristics at off design operation, an effective technique is verified utilizing small amount of gas injection. The gas jet is supplied from a pressurized reservoir independent of the liquid supply system, and it is injected from the center of the liquid nozzles toward the impingement point. To clarify the flow field and the mechanism of the effectivity, experimental visualizations, drop size measurements and corresponding numerical analyses are carried out. It is elucidated that atomization is drastically promoted when the dynamic pressure of gas overcomes that of liquid at the impingement point. By the gas injection with the amount of only 1% of liquid mass flow rate, Sauter Mean Diameter (SMD) becomes one-tenth of the original SMD. In addition, the optimized atomization efficiency is achieved when the gas dynamic pressure is twice as much as the liquid at the impingement point.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
注气增强冲击雾化机理
碰撞雾化技术在液体火箭推进系统中得到了广泛的应用,它能够在额定运行下产生细小的液滴。相反,在非设计条件下,当喷射速度变慢时,雾化特性会恶化。在本研究中,为了改善非设计工况下的雾化特性,验证了利用少量注气的有效方法。气体射流由独立于供液系统的加压储层提供,并从液体喷嘴的中心向撞击点喷射。为了阐明流场和效果机理,进行了实验可视化、液滴尺寸测量和相应的数值分析。结果表明,当气体的动压超过液体的动压时,雾化效果显著提高。当注气量仅为液体质量流量的1%时,Sauter平均直径(SMD)变为原来SMD的十分之一。此外,当气体动压为碰撞点处液体动压的两倍时,雾化效率达到最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SSRT and fatigue crack growth properties of two types of high strength austenitic stainless steels in high pressure hydrogen gas Influence of Initial Systems on the Renewal Planning of Energy Supply Systems for a Hospital Fdtd analysis of nanoscale temperature distribution induced by near-Field photothermal effect A study on equivalence-ratio dependence of minimum ignition energy based on initial burning velocity An analysis of quantum effect on the p-V-T relation of cryogenic hydrogen using centroid molecular dynamics method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1