{"title":"Small signal model of memcapacitor-inductor oscillation circuit","authors":"S. Yener, R. Mutlu","doi":"10.1109/EBBT.2017.7956774","DOIUrl":null,"url":null,"abstract":"To extend the concept of the memristive systems to capacitive systems, memcapacitive systems have been described in 2009. Memcapacitors which are a subset of memcapacitive systems are flux-dependent nonlinear circuit elements with memory. Materials with memcapacitive properties has already been reported in literature. The elusive memcapacitor show promise for new type of applications because of their unusual characteristics which cannot be mimicked with linear circuit elements. Since these elements are not commercially available yet, their analytical solutions and simulation studies are very important. Then these solutions may provide valuable insight for their usage, behavior and predicting of their new application areas. In this study, a memcapacitor-inductor oscillation circuit is examined using simulations and also its small signal equivalent circuit is obtained using perturbation theory since such a circuit does not have an exact solution.","PeriodicalId":293165,"journal":{"name":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBBT.2017.7956774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
To extend the concept of the memristive systems to capacitive systems, memcapacitive systems have been described in 2009. Memcapacitors which are a subset of memcapacitive systems are flux-dependent nonlinear circuit elements with memory. Materials with memcapacitive properties has already been reported in literature. The elusive memcapacitor show promise for new type of applications because of their unusual characteristics which cannot be mimicked with linear circuit elements. Since these elements are not commercially available yet, their analytical solutions and simulation studies are very important. Then these solutions may provide valuable insight for their usage, behavior and predicting of their new application areas. In this study, a memcapacitor-inductor oscillation circuit is examined using simulations and also its small signal equivalent circuit is obtained using perturbation theory since such a circuit does not have an exact solution.