Privacy preserving for human object in video surveillance via visual cryptography

Ling Du, Yuhang Li
{"title":"Privacy preserving for human object in video surveillance via visual cryptography","authors":"Ling Du, Yuhang Li","doi":"10.1109/SPAC.2014.6982661","DOIUrl":null,"url":null,"abstract":"This paper proposes a privacy preserving scheme for data security in the video surveillance. We firstly separate the foreground for each video frame, and obscure the separated human object by motion blur. For secure storage, each blurred foreground object is encrypted into N shares by visual cryptography, and stored into different servers. Each share is fully confidential and does not convey any meaningful information about the original video, so that breaking into one storage server do not induce any compromise. For legal requirement, the authorized users can recover the original content with better quality by non-blind deblurring algorithm. Moreover, thanks to our exploited foreground based encoding scheme, the data expansion introduced by distributed storage is greatly reduced. It is impossible for unauthorized users to recover the original content by the following reasons: 1) distributed video stream storage; 2) unknown blurring kernel; 3) inaccurate foreground content and mask. The performance evaluation on several surveillance scenarios demonstrates that our proposed method can effectively protect sensitive privacy information in surveillance videos.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a privacy preserving scheme for data security in the video surveillance. We firstly separate the foreground for each video frame, and obscure the separated human object by motion blur. For secure storage, each blurred foreground object is encrypted into N shares by visual cryptography, and stored into different servers. Each share is fully confidential and does not convey any meaningful information about the original video, so that breaking into one storage server do not induce any compromise. For legal requirement, the authorized users can recover the original content with better quality by non-blind deblurring algorithm. Moreover, thanks to our exploited foreground based encoding scheme, the data expansion introduced by distributed storage is greatly reduced. It is impossible for unauthorized users to recover the original content by the following reasons: 1) distributed video stream storage; 2) unknown blurring kernel; 3) inaccurate foreground content and mask. The performance evaluation on several surveillance scenarios demonstrates that our proposed method can effectively protect sensitive privacy information in surveillance videos.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视频监控中人的隐私保护
针对视频监控中的数据安全问题,提出了一种隐私保护方案。我们首先对每个视频帧的前景进行分离,然后对分离出来的人体物体进行模糊处理。为了安全存储,每个模糊的前景对象通过视觉加密被加密为N个共享,并存储在不同的服务器中。每个共享都是完全保密的,不传递任何有关原始视频的有意义的信息,因此,闯入一个存储服务器不会导致任何妥协。出于法律要求,授权用户可以通过非盲去模糊算法以更好的质量恢复原始内容。此外,由于采用了基于前景的编码方案,大大减少了分布式存储带来的数据扩展。由于以下原因,未经授权的用户无法恢复原始内容:1)分布式视频流存储;2)未知模糊核;3)前景内容和蒙版不准确。对多个监控场景的性能评估表明,该方法可以有效地保护监控视频中的敏感隐私信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new GPR image de-nosing method based on BEMD Design and implementation of one vertical video search engine Multi-scale sparse denoising model based on non-separable wavelet Dollar bill denomination recognition algorithm based on local texture feature Class specific dictionary learning for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1