Hybrid evolutionary algorithms based on PSO and GA

Xiaohu Shi, Y. H. Lu, Chunguang Zhou, H. Lee, W. Z. Lin, Yanchun Liang
{"title":"Hybrid evolutionary algorithms based on PSO and GA","authors":"Xiaohu Shi, Y. H. Lu, Chunguang Zhou, H. Lee, W. Z. Lin, Yanchun Liang","doi":"10.1109/CEC.2003.1299387","DOIUrl":null,"url":null,"abstract":"Inspired by the idea of genetic algorithm, we propose two hybrid evolutionary algorithms based on PSO and GA methods through crossing over the PSO and GA algorithms. The main ideas of the two proposed methods are to integrate PSO and GA methods in parallel and series forms respectively. Simulations for a series of benchmark test functions show that both of the two proposed methods possess better ability to find the global optimum than that of the standard PSO algorithm.","PeriodicalId":416243,"journal":{"name":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2003.1299387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

Abstract

Inspired by the idea of genetic algorithm, we propose two hybrid evolutionary algorithms based on PSO and GA methods through crossing over the PSO and GA algorithms. The main ideas of the two proposed methods are to integrate PSO and GA methods in parallel and series forms respectively. Simulations for a series of benchmark test functions show that both of the two proposed methods possess better ability to find the global optimum than that of the standard PSO algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群算法和遗传算法的混合进化算法
受遗传算法思想的启发,通过对粒子群算法和遗传算法的交叉,提出了两种基于粒子群算法和遗传算法的混合进化算法。提出的两种方法的主要思想是将粒子群算法和遗传算法分别以并联和串联形式进行整合。对一系列基准测试函数的仿真表明,两种方法都比标准粒子群算法具有更好的全局寻优能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Searching oligo sets of human chromosome 12 using evolutionary strategies A nonlinear control system design based on HJB/HJI/FBI equations via differential genetic programming approach Particle swarm optimizers for Pareto optimization with enhanced archiving techniques Epigenetic programming: an approach of embedding epigenetic learning via modification of histones in genetic programming A new particle swarm optimiser for linearly constrained optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1