Non-Invasive Characterization of Atrio-Ventricular Properties During Atrial Fibrillation

Mattias P. Karlsson, Mikael Wallman, S. R. Ulimoen, F. Sandberg
{"title":"Non-Invasive Characterization of Atrio-Ventricular Properties During Atrial Fibrillation","authors":"Mattias P. Karlsson, Mikael Wallman, S. R. Ulimoen, F. Sandberg","doi":"10.23919/cinc53138.2021.9662952","DOIUrl":null,"url":null,"abstract":"The atrio-ventricular (AV) node is the primary regulator of ventricular rhythm during atrial fibrillation (AF). Hence, ECG based characterization of AV node properties can be an important tool for monitoring and predicting the effect of rate control drugs. In this work we present a network model of the AV node, and an associated workflow for robust estimation of the model parameters from ECG. The model consists of interacting nodes with refractory periods and conduction delays determined by the stimulation history of each node. The nodes are organized in one fast pathway (FP) and one slow pathway (SP), interconnected at their last nodes. Model parameters are estimated using a genetic algorithm with a fitness function based on the Poincare plot of the RR interval series. The robustness of the parameter estimates was evaluated using simulated data based on ECG measurements. Results from this show that refractory period parameters $R_{min}^{SP}$ and $\\Delta R^{SP}$ can be estimated with an error $(mean\\pm std)$ of $10\\pm 22\\ ms\\ and-12.6\\pm 26\\ ms$ respectively, and conduction delay parameters $D_{min,tot}^{SP}$ and $\\Delta D_{tot}^{SP}$ with an error of $7\\pm 35\\ ms$ and $4\\pm 36\\ ms$. Corresponding results for the fast pathway are $31.7\\pm 65\\ ms, -0.3\\pm 77\\ ms$, and 1 $7\\pm 29\\ ms,43\\pm 109\\ ms$. This suggest that AV node properties can be assessed from ECG during AF with enough precision and robustness for monitoring the effect of rate control drugs.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The atrio-ventricular (AV) node is the primary regulator of ventricular rhythm during atrial fibrillation (AF). Hence, ECG based characterization of AV node properties can be an important tool for monitoring and predicting the effect of rate control drugs. In this work we present a network model of the AV node, and an associated workflow for robust estimation of the model parameters from ECG. The model consists of interacting nodes with refractory periods and conduction delays determined by the stimulation history of each node. The nodes are organized in one fast pathway (FP) and one slow pathway (SP), interconnected at their last nodes. Model parameters are estimated using a genetic algorithm with a fitness function based on the Poincare plot of the RR interval series. The robustness of the parameter estimates was evaluated using simulated data based on ECG measurements. Results from this show that refractory period parameters $R_{min}^{SP}$ and $\Delta R^{SP}$ can be estimated with an error $(mean\pm std)$ of $10\pm 22\ ms\ and-12.6\pm 26\ ms$ respectively, and conduction delay parameters $D_{min,tot}^{SP}$ and $\Delta D_{tot}^{SP}$ with an error of $7\pm 35\ ms$ and $4\pm 36\ ms$. Corresponding results for the fast pathway are $31.7\pm 65\ ms, -0.3\pm 77\ ms$, and 1 $7\pm 29\ ms,43\pm 109\ ms$. This suggest that AV node properties can be assessed from ECG during AF with enough precision and robustness for monitoring the effect of rate control drugs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心房颤动时房室特性的无创表征
房室结是心房颤动(AF)期间心室节律的主要调节因子。因此,基于ECG的房室结特性表征可以成为监测和预测速率控制药物效果的重要工具。在这项工作中,我们提出了一个房室结的网络模型,以及一个相关的工作流,用于从ECG中稳健估计模型参数。该模型由具有不应期和传导延迟的相互作用节点组成,这些节点的传导延迟由每个节点的刺激历史决定。这些节点被组织在一条快速路径(FP)和一条慢速路径(SP)中,在它们的最后一个节点上相互连接。模型参数的估计采用基于区间序列庞加莱图的适应度函数遗传算法。使用基于心电测量的模拟数据评估参数估计的鲁棒性。结果表明,不应期参数$R_{min}^{SP}$和$\Delta R^{SP}$的估计误差分别为$10\pm 22\ ms和$ 12.6\pm 26\ ms$,传导延迟参数$D_{min,tot}^{SP}$和$\Delta D_{tot}^{SP}$的估计误差分别为$7\pm 35\ ms$和$4\pm 36\ ms$。对应的快速通路结果为$31.7\pm 65\ ms, $ -0.3\pm 77\ ms$, $ 1 $7\pm 29\ ms, $ 43\pm 109\ ms$。这表明在房颤期间通过心电图评估房室结的性质具有足够的精度和鲁棒性,可用于监测速率控制药物的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Hydroxychloroquine Dosage on the Occurrence of Arrhythmia in COVID-19 Infected Ventricle Guinea Pig ECG Changes under the Effect of New Drug Candidate TP28b Electrocardiographic Imaging of Sinus Rhythm in Pig Hearts Using Bayesian Maximum A Posteriori Estimation Sensitivity Analysis and Parameter Identification of a Cardiovascular Model in Aortic Stenosis Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1