Optimization of Criteria for an Efficient Screening of New Thermoelectric Compounds: The TiNiSi Structure-Type as a Case-Study

IF 3.784 3区 化学 Q1 Chemistry ACS Combinatorial Science Pub Date : 2020-10-20 DOI:10.1021/acscombsci.0c00133
Celine Barreteau*, Jean-Claude Crivello, Jean-Marc Joubert, Eric Alleno
{"title":"Optimization of Criteria for an Efficient Screening of New Thermoelectric Compounds: The TiNiSi Structure-Type as a Case-Study","authors":"Celine Barreteau*,&nbsp;Jean-Claude Crivello,&nbsp;Jean-Marc Joubert,&nbsp;Eric Alleno","doi":"10.1021/acscombsci.0c00133","DOIUrl":null,"url":null,"abstract":"<p >High-throughput calculations can be applied to a large number of compounds, in order to discover new useful materials. In the present work, ternary intermetallic compounds are investigated, to find new potentially interesting materials for thermoelectric applications. The screening of stable nonmetallic compounds required for such applications is performed by calculating their electronic structure, using DFT methods. In the first section, the study of the density of states at the Fermi level, of pure elements, binary and ternary compounds, leads to empirically chose the selection criterion to distinguish metals from nonmetals. In the second section, the TiNiSi structure-type is used as a case-study application, through the investigation of 570 possible compositions. The screening leads to the selection of 12 possible semiconductors. The Seebeck coefficient and the lattice thermal conductivity of the selected compounds are calculated in order to identify the most promising ones. Among them, TiNiSi, TaNiP, or HfCoP are shown to be worth a detailed experimental investigation.</p>","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":null,"pages":null},"PeriodicalIF":3.7840,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acscombsci.0c00133","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscombsci.0c00133","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 4

Abstract

High-throughput calculations can be applied to a large number of compounds, in order to discover new useful materials. In the present work, ternary intermetallic compounds are investigated, to find new potentially interesting materials for thermoelectric applications. The screening of stable nonmetallic compounds required for such applications is performed by calculating their electronic structure, using DFT methods. In the first section, the study of the density of states at the Fermi level, of pure elements, binary and ternary compounds, leads to empirically chose the selection criterion to distinguish metals from nonmetals. In the second section, the TiNiSi structure-type is used as a case-study application, through the investigation of 570 possible compositions. The screening leads to the selection of 12 possible semiconductors. The Seebeck coefficient and the lattice thermal conductivity of the selected compounds are calculated in order to identify the most promising ones. Among them, TiNiSi, TaNiP, or HfCoP are shown to be worth a detailed experimental investigation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型热电化合物高效筛选标准的优化:以TiNiSi结构型为例
高通量计算可以应用于大量的化合物,以发现新的有用材料。在本工作中,研究了三元金属间化合物,以寻找新的潜在的有趣的热电应用材料。这种应用所需的稳定非金属化合物的筛选是通过使用DFT方法计算它们的电子结构来完成的。在第一部分中,对纯元素、二元和三元化合物的费米能级态密度的研究导致了经验选择区分金属和非金属的选择标准。在第二部分中,通过调查570种可能的组合,将TiNiSi结构类型用作案例研究应用程序。筛选导致选择12种可能的半导体。计算了所选化合物的塞贝克系数和晶格热导率,以确定最有希望的化合物。其中,TiNiSi、TaNiP和HfCoP值得进行详细的实验研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Combinatorial Science
ACS Combinatorial Science CHEMISTRY, APPLIED-CHEMISTRY, MEDICINAL
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.
期刊最新文献
Issue Publication Information Issue Editorial Masthead ACS Combinatorial Science: January, 1999–December, 2020 Aldol Reactions of Biorenewable Triacetic Acid Lactone Precursor Evaluated Using Desorption Electrospray Ionization Mass Spectrometry High-Throughput Experimentation and Validated by Continuous Flow Synthesis Fe3O4@[email protected]: A Magnetic Metal–Organic Framework as a Recoverable Catalyst for the Hydration of Nitriles and Reduction of Isothiocyanates, Isocyanates, and Isocyanides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1