Predictive analytics on Covid using recurrent neural network

S. Vadivel, R. Jayakarthik
{"title":"Predictive analytics on Covid using recurrent neural network","authors":"S. Vadivel, R. Jayakarthik","doi":"10.1063/5.0074488","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a risk based predictive analytics model utilizing the available dataset to train the model. To predict the likelihood of a new strain of Covid-19 syndrome in patients, the researchers used a deep learning classifier called Recurrent Neural Network (RNN). The study considers diabetes patients as the respondents and the data is collected from the diabetes patients. The risk of covid-19 effects on diabetes patients are deeply analyzed using RNN. The collected datasets are initially pre-processed and then the features are extracted with final classification using RNN. The experimental analysis is conducted to validate the efficacy of the predictive analytics using RNN. The findings indicate that the suggested RNN outperforms other approaches for forecasting covid-19 risk in diabetic patients. © 2022 Author(s).","PeriodicalId":443051,"journal":{"name":"RECENT TRENDS IN SCIENCE AND ENGINEERING","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RECENT TRENDS IN SCIENCE AND ENGINEERING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0074488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we develop a risk based predictive analytics model utilizing the available dataset to train the model. To predict the likelihood of a new strain of Covid-19 syndrome in patients, the researchers used a deep learning classifier called Recurrent Neural Network (RNN). The study considers diabetes patients as the respondents and the data is collected from the diabetes patients. The risk of covid-19 effects on diabetes patients are deeply analyzed using RNN. The collected datasets are initially pre-processed and then the features are extracted with final classification using RNN. The experimental analysis is conducted to validate the efficacy of the predictive analytics using RNN. The findings indicate that the suggested RNN outperforms other approaches for forecasting covid-19 risk in diabetic patients. © 2022 Author(s).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于递归神经网络的新冠肺炎预测分析
在本文中,我们开发了一个基于风险的预测分析模型,利用可用的数据集来训练模型。为了预测患者感染新型Covid-19综合征的可能性,研究人员使用了一种名为循环神经网络(RNN)的深度学习分类器。本研究以糖尿病患者为调查对象,数据来源于糖尿病患者。采用随机神经网络深入分析新冠肺炎对糖尿病患者的影响。收集到的数据集首先进行预处理,然后使用RNN提取特征并进行最终分类。通过实验分析验证了RNN预测分析的有效性。研究结果表明,建议的RNN在预测糖尿病患者covid-19风险方面优于其他方法。©2022作者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative analysis of crime predictions using machine learning algorithms with geospatial features Analysis of machine learning algorithm in network threat detection Application of mixed teaching method in teaching nursing process Spherical neutrosophic graph coloring Optimisation of machining parameters for colmonoy hard faced on stainless steel in wire cut EDM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1