Dingyu Liu, Yusheng Wang, Yonghoon Ji, Hiroshi Tsuchiya, A. Yamashita, H. Asama
{"title":"Development of image simulator for forward-looking sonar using 3D rendering","authors":"Dingyu Liu, Yusheng Wang, Yonghoon Ji, Hiroshi Tsuchiya, A. Yamashita, H. Asama","doi":"10.1117/12.2590004","DOIUrl":null,"url":null,"abstract":"This paper proposes an efficient imaging sonar simulation method based on 3D modeling. In underwater scenarios, a forward-looking sonar, which is also known as an acoustic camera, outperforms other sensors including popular optical cameras, for it is resistant to turbidity and weak illumination, which are typical in underwater environments, and thus able to provide accurate information of the environments. For those underwater tasks highly automated along with artificial intelligence and computer vision, the development of the acoustic image simulator can provide support by reproducing the environment and generating synthetic acoustic images. It can also facilitate researchers to tackle the scarcity of real underwater data in some theoretical studies. In this paper, we make use of the 3D modeling technique to simulate the underwater scenarios and the flexible automated control of the acoustic camera and objects in the scenarios. The simulation results and the comparison to real acoustic images demonstrate that the proposed simulator can generate accurate synthetic acoustic images efficiently and flexibly.","PeriodicalId":295011,"journal":{"name":"International Conference on Quality Control by Artificial Vision","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Quality Control by Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2590004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper proposes an efficient imaging sonar simulation method based on 3D modeling. In underwater scenarios, a forward-looking sonar, which is also known as an acoustic camera, outperforms other sensors including popular optical cameras, for it is resistant to turbidity and weak illumination, which are typical in underwater environments, and thus able to provide accurate information of the environments. For those underwater tasks highly automated along with artificial intelligence and computer vision, the development of the acoustic image simulator can provide support by reproducing the environment and generating synthetic acoustic images. It can also facilitate researchers to tackle the scarcity of real underwater data in some theoretical studies. In this paper, we make use of the 3D modeling technique to simulate the underwater scenarios and the flexible automated control of the acoustic camera and objects in the scenarios. The simulation results and the comparison to real acoustic images demonstrate that the proposed simulator can generate accurate synthetic acoustic images efficiently and flexibly.