Assessing cyber-incidents using machine learning

Ross Gore, S. Diallo, J. Padilla, B. Ezell
{"title":"Assessing cyber-incidents using machine learning","authors":"Ross Gore, S. Diallo, J. Padilla, B. Ezell","doi":"10.1504/IJICS.2018.10016383","DOIUrl":null,"url":null,"abstract":"One of the difficulties in effectively analysing and combating cyber attacks is an inability to identify when, why and how they occur. Victim organisations do not reveal this data for fear of disclosing vulnerabilities and attackers do not reveal themselves for fear of being prosecuted. In this paper, we employ two machine-learning algorithms to identify: 1) if a text-based report is related to a cyber-incident; 2) the topic within the field of cyber-security the incident report addresses. First, we evaluate the effectiveness of our approach using a benchmark set of cyber-incident reports from 2006. Then, we assess the current state of cyber-security by applying our approach to a 2014 set of cyber-incident reports we gathered. Ultimately, our results show that the combination of automatically gathering and organising cyber-security reports in close to real-time yields an assessment technology with actionable results for intelligence and security analysts.","PeriodicalId":164016,"journal":{"name":"Int. J. Inf. Comput. Secur.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Comput. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJICS.2018.10016383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the difficulties in effectively analysing and combating cyber attacks is an inability to identify when, why and how they occur. Victim organisations do not reveal this data for fear of disclosing vulnerabilities and attackers do not reveal themselves for fear of being prosecuted. In this paper, we employ two machine-learning algorithms to identify: 1) if a text-based report is related to a cyber-incident; 2) the topic within the field of cyber-security the incident report addresses. First, we evaluate the effectiveness of our approach using a benchmark set of cyber-incident reports from 2006. Then, we assess the current state of cyber-security by applying our approach to a 2014 set of cyber-incident reports we gathered. Ultimately, our results show that the combination of automatically gathering and organising cyber-security reports in close to real-time yields an assessment technology with actionable results for intelligence and security analysts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习评估网络事件
有效分析和打击网络攻击的困难之一是无法确定它们何时、为何以及如何发生。受害者组织不会透露这些数据,因为害怕暴露漏洞,攻击者也不会透露自己,因为害怕被起诉。在本文中,我们采用了两种机器学习算法来识别:1)基于文本的报告是否与网络事件相关;2)事件报告所涉及的网络安全领域的主题。首先,我们使用2006年网络事件报告的基准集来评估我们方法的有效性。然后,我们通过将我们的方法应用于我们收集的2014年网络事件报告集来评估当前的网络安全状况。最终,我们的结果表明,自动收集和组织接近实时的网络安全报告的组合产生了一种评估技术,为情报和安全分析师提供了可操作的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vulnerability discovery modelling: a general framework Modelling and visualising SSH brute force attack behaviours through a hybrid learning framework Empirical risk assessment of attack graphs using time to compromise framework Fault-based testing for discovering SQL injection vulnerabilities in web applications Leveraging Intel SGX to enable trusted and privacy preserving membership service in distributed ledgers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1