{"title":"A Systematic In Silico Investigation of Phytochemicals from Artocarpus Species against Plasmodium falciparum Inhibitors","authors":"Surabhi Chaurasia, Anima Pandey","doi":"10.3390/eca2022-12712","DOIUrl":null,"url":null,"abstract":": Artemisinin-resistant plasmodium strains are becoming increasingly common in malaria patients, posing a serious threat to successful malaria management. Brosimone, a significant poly-phenolic ingredient of Artocarpus lakoocha , has previously been shown to have antimalarial activity in vitro. However, research into the precise mechanism of interactions is still in progress. The present study explored molecular modeling research in order to elucidate the likely mechanism of its anti-malarial effect as Falcipain-2 (FP-2) inhibition. Brosimone has the maximum binding affinity (docking score: − 8.1 Kcal/mol) against FP-2 from Plasmodium falciparum , according to our molecular docking analysis of 50 lakoocha bioactive chemicals. For numerous Artocarpus lakoocha polyphenols (ALP), used in-silico pharmacokinetics and toxicities and concluded that critical insights into the mechanism of action of Brosimone and other ALP as a potential therapeutic agent (2GHU) against malaria.","PeriodicalId":431431,"journal":{"name":"ECA 2022","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECA 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eca2022-12712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
: Artemisinin-resistant plasmodium strains are becoming increasingly common in malaria patients, posing a serious threat to successful malaria management. Brosimone, a significant poly-phenolic ingredient of Artocarpus lakoocha , has previously been shown to have antimalarial activity in vitro. However, research into the precise mechanism of interactions is still in progress. The present study explored molecular modeling research in order to elucidate the likely mechanism of its anti-malarial effect as Falcipain-2 (FP-2) inhibition. Brosimone has the maximum binding affinity (docking score: − 8.1 Kcal/mol) against FP-2 from Plasmodium falciparum , according to our molecular docking analysis of 50 lakoocha bioactive chemicals. For numerous Artocarpus lakoocha polyphenols (ALP), used in-silico pharmacokinetics and toxicities and concluded that critical insights into the mechanism of action of Brosimone and other ALP as a potential therapeutic agent (2GHU) against malaria.