Multi-channel precision-sparsity-adapted inter-frame differential data codec for video neural network processor

Yixiong Yang, Zhe Yuan, Fang Su, Fanyang Cheng, Zhuqing Yuan, Huazhong Yang, Yongpan Liu
{"title":"Multi-channel precision-sparsity-adapted inter-frame differential data codec for video neural network processor","authors":"Yixiong Yang, Zhe Yuan, Fang Su, Fanyang Cheng, Zhuqing Yuan, Huazhong Yang, Yongpan Liu","doi":"10.1145/3370748.3407002","DOIUrl":null,"url":null,"abstract":"Activation I/O traffic is a critical bottleneck of video neural network processor. Recent works adopted an inter-frame difference method to reduce activation size. However, current methods can't fully adapt to the various precision and sparsity in differential data. In this paper, we propose the multi-channel precision-sparsity-adapted codec, which will separate the differential activation and encode activation in multiple channels. We analyze the most adapted encoding of each channel, and select the optimal channel number with the best performance. A two-channel codec hardware has been implemented in the ASIC accelerator, which can encode/decode activations in parallel. Experiment results show that our coding achieves 2.2x-18.2x compression rate in three scenarios with no accuracy loss, and the hardware has 42x/174x improvement on speed and energy-efficiency compared with the software codec.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3407002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Activation I/O traffic is a critical bottleneck of video neural network processor. Recent works adopted an inter-frame difference method to reduce activation size. However, current methods can't fully adapt to the various precision and sparsity in differential data. In this paper, we propose the multi-channel precision-sparsity-adapted codec, which will separate the differential activation and encode activation in multiple channels. We analyze the most adapted encoding of each channel, and select the optimal channel number with the best performance. A two-channel codec hardware has been implemented in the ASIC accelerator, which can encode/decode activations in parallel. Experiment results show that our coding achieves 2.2x-18.2x compression rate in three scenarios with no accuracy loss, and the hardware has 42x/174x improvement on speed and energy-efficiency compared with the software codec.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向视频神经网络处理器的多通道精度稀疏化帧间差分数据编解码器
激活I/O流量是视频神经网络处理器的关键瓶颈。最近的研究采用帧间差分法来减小激活尺寸。然而,现有的方法不能完全适应差分数据的精度和稀疏性。本文提出了一种多通道精确稀疏化编解码器,该编解码器将多通道中的差分激活和编码激活分离开来。我们分析了每个信道最适合的编码方式,并选择了性能最好的最优信道数。在ASIC加速器中实现了双通道编解码器硬件,可以并行编码/解码激活。实验结果表明,我们的编码在三种场景下的压缩率均达到2.2x-18.2x,且没有精度损失,与软件编解码器相比,硬件编解码器的速度和能效提高了42倍/174倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge AI Applications HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors Improving Performance and Power by Co-Optimizing Middle-of-Line Routing, Pin Pattern Generation, and Contact over Active Gates in Standard Cell Layout Synthesis Exploiting successive identical words and differences with dynamic bases for effective compression in Non-Volatile Memories Canopy: A CNFET-based Process Variation Aware Systolic DNN Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1