SynConSMutate: Concolic Testing of Database Applications via Synthetic Data Guided by SQL Mutants

Tanmoy Sarkar, Samik Basu, Johnny S. K. Wong
{"title":"SynConSMutate: Concolic Testing of Database Applications via Synthetic Data Guided by SQL Mutants","authors":"Tanmoy Sarkar, Samik Basu, Johnny S. K. Wong","doi":"10.1109/ITNG.2013.54","DOIUrl":null,"url":null,"abstract":"Testing techniques for database applications typically include generation of database states (synthetic data) along with automatic generation of test cases. The quality of such test cases is evaluated on the basis of structural coverage of the host language (e.g., Java), whereas, the quality of test cases for the embedded language (e.g., SQL) is evaluated separately using mutation testing. In mutation testing, several mutants or variants of the original SQL query are generated and mutation score is calculated. It is the percentage of mutants that can be differentiated in terms of their results using the given test cases. Higher mutation score indicates higher quality of the test cases. In existing approaches the generated test cases achieve high structural coverage with respect to the generated synthetic data, but suffer from low mutation score with respect to the same data. We present a novel framework called \\textit{SynConSMutate} for test case and synthetic data generation for database applications. The generated test cases with respect to the newly generated synthetic data ensure high quality not only in terms of coverage of code written in the host language, but also in terms of mutant detection of the queries written in the embedded language.","PeriodicalId":320262,"journal":{"name":"2013 10th International Conference on Information Technology: New Generations","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Information Technology: New Generations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNG.2013.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Testing techniques for database applications typically include generation of database states (synthetic data) along with automatic generation of test cases. The quality of such test cases is evaluated on the basis of structural coverage of the host language (e.g., Java), whereas, the quality of test cases for the embedded language (e.g., SQL) is evaluated separately using mutation testing. In mutation testing, several mutants or variants of the original SQL query are generated and mutation score is calculated. It is the percentage of mutants that can be differentiated in terms of their results using the given test cases. Higher mutation score indicates higher quality of the test cases. In existing approaches the generated test cases achieve high structural coverage with respect to the generated synthetic data, but suffer from low mutation score with respect to the same data. We present a novel framework called \textit{SynConSMutate} for test case and synthetic data generation for database applications. The generated test cases with respect to the newly generated synthetic data ensure high quality not only in terms of coverage of code written in the host language, but also in terms of mutant detection of the queries written in the embedded language.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
synconsmate:通过SQL突变体指导的合成数据对数据库应用程序进行同步测试
数据库应用程序的测试技术通常包括数据库状态(合成数据)的生成以及测试用例的自动生成。这种测试用例的质量是在宿主语言(例如Java)的结构覆盖的基础上评估的,然而,嵌入式语言(例如SQL)的测试用例的质量是使用突变测试单独评估的。在突变测试中,生成原始SQL查询的几个突变或变体,并计算突变分数。它是可以根据使用给定测试用例的结果来区分的突变体的百分比。更高的突变分数表明测试用例的质量更高。在现有的方法中,生成的测试用例相对于生成的合成数据实现了高的结构覆盖率,但是相对于相同的数据遭受低的突变得分。我们提出了一个名为\textit{SynConSMutate}的新框架,用于数据库应用程序的测试用例和合成数据生成。针对新生成的合成数据生成的测试用例不仅在用宿主语言编写的代码的覆盖率方面保证了高质量,而且在用嵌入式语言编写的查询的突变检测方面也保证了高质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A User-centric Approach towards Understanding the Influences of Social Tags Choices for Academic Papers Forecasting Wet Land Rice Production for Food Security A Study on the Bootstrapping Architectures for Scalable Private Reappearing Overlay Network Software Safety and Security for Programmable Logic Controllers Text-to-Onto Miner: A Concept Driven and Interval Controlled Ontology Builder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1