Detecting possibility of complications of diseases using rough set based granulation

S. Tsumoto
{"title":"Detecting possibility of complications of diseases using rough set based granulation","authors":"S. Tsumoto","doi":"10.1109/NAFIPS.2003.1226794","DOIUrl":null,"url":null,"abstract":"One of the most important problems with medical expert systems is that they cannot make a differential diagnosis with complicated cases. This paper reviews reasoning about complications from the viewpoint of information granulation and proposes an approach to extracting rules for diagnosis of complications from clinical datasets. The illustrative example show that rough set based granular computing gives a nice framework to detect the complications.","PeriodicalId":153530,"journal":{"name":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","volume":"265 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2003.1226794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most important problems with medical expert systems is that they cannot make a differential diagnosis with complicated cases. This paper reviews reasoning about complications from the viewpoint of information granulation and proposes an approach to extracting rules for diagnosis of complications from clinical datasets. The illustrative example show that rough set based granular computing gives a nice framework to detect the complications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粗糙集的肉芽学检测疾病并发症的可能性
医学专家系统最重要的问题之一是它们不能对复杂病例做出鉴别诊断。本文从信息粒化的角度综述了并发症的推理,提出了一种从临床数据集中提取并发症诊断规则的方法。示例表明,基于粗糙集的颗粒计算为检测复杂性提供了一个很好的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy-rough nearest-neighbor classification approach Fault detection and diagnosis in turbine engines using fuzzy logic How the number of measured dimensions affects fuzzy causal measures of vitamin therapy for hyperhomocysteinemia in stroke patients The fuzzy rough approximation decomposability Fuzzy-neuro system for bridge health monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1