A Novel Developer Ranking Algorithm for Automatic Bug Triage Using Topic Model and Developer Relations

Zhang Tao, Geunseok Yang, Byungjeong Lee, E. Lua
{"title":"A Novel Developer Ranking Algorithm for Automatic Bug Triage Using Topic Model and Developer Relations","authors":"Zhang Tao, Geunseok Yang, Byungjeong Lee, E. Lua","doi":"10.1109/APSEC.2014.43","DOIUrl":null,"url":null,"abstract":"Recently, bug resolution has become a pivotal issue for software maintenance where recommendations for appropriate fixers are an important task. Some approaches (e.g., Social network and machine learning techniques) exist that can achieve automatic bug triage (i.e., Developer recommendation). This paper proposes a new method to recommend the most suitable fixer for bug resolution. Different from previous approaches, the proposed approaches combine topic model and developer relations (e.g., Bug reporter and assignee) to capture developers' interest and experience on specific bug reports, we can arrange for the most appropriate developer to fix a new bug when it comes in. We evaluate the performance of our method using three large-scale open-source projects, including Eclipse, Mozilla Fire fox, and Net beans. The experimental results reveal that our approach outperforms other recommendation methods for developers.","PeriodicalId":380881,"journal":{"name":"2014 21st Asia-Pacific Software Engineering Conference","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21st Asia-Pacific Software Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSEC.2014.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Recently, bug resolution has become a pivotal issue for software maintenance where recommendations for appropriate fixers are an important task. Some approaches (e.g., Social network and machine learning techniques) exist that can achieve automatic bug triage (i.e., Developer recommendation). This paper proposes a new method to recommend the most suitable fixer for bug resolution. Different from previous approaches, the proposed approaches combine topic model and developer relations (e.g., Bug reporter and assignee) to capture developers' interest and experience on specific bug reports, we can arrange for the most appropriate developer to fix a new bug when it comes in. We evaluate the performance of our method using three large-scale open-source projects, including Eclipse, Mozilla Fire fox, and Net beans. The experimental results reveal that our approach outperforms other recommendation methods for developers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于主题模型和开发者关系的Bug自动分类的开发者排名算法
最近,错误解决已经成为软件维护的一个关键问题,其中推荐合适的修复程序是一项重要任务。有些方法(例如,社交网络和机器学习技术)可以实现自动错误分类(例如,开发者推荐)。本文提出了一种新的方法来推荐最合适的修复程序来解决错误。与以前的方法不同,所提出的方法结合了主题模型和开发人员关系(例如,Bug报告者和受让人)来捕捉开发人员对特定Bug报告的兴趣和经验,我们可以安排最合适的开发人员来修复新Bug。我们使用三个大型开源项目(包括Eclipse、Mozilla firefox和Net beans)来评估我们方法的性能。实验结果表明,我们的方法优于其他开发人员推荐方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
pIML -- An Interrupt Program Modelling Language for Real-Time and Embedded Systems What Community Contribution Pattern Says about Stability of Software Project? Guidelines for the Use of Function Block Diagram in Reactor Protection Systems Data Flow Based Integration Testing for Embedded System Using Interaction Model Model Checking of Software Product Lines in Presence of Nondeterminism and Probabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1