Tactical Intention Recognition Method of Air Combat Target Based on BiLSTM network

Xingyu Wang, Zhen Yang, Guang Zhan, Jichuan Huang, Shiyuan Chai, Deyun Zhou
{"title":"Tactical Intention Recognition Method of Air Combat Target Based on BiLSTM network","authors":"Xingyu Wang, Zhen Yang, Guang Zhan, Jichuan Huang, Shiyuan Chai, Deyun Zhou","doi":"10.1109/ICUS55513.2022.9986667","DOIUrl":null,"url":null,"abstract":"As an important support for modern air combat intelligent auxiliary decision-making, real-time and high-precision target intent recognition addresses the foundation for realizing deep situational awareness and creating tactical opportunities. Aiming at the limitation of the existing algorithms such as dependence on empirical knowledge, difficulty in extracting the full temporal characteristics, and inability to meet the requirements of actual air combat, this paper proposes a target tactical intention recognition algorithm based on bi-directional Long Short-Term Memory (BiLSTM). Firstly, we analyze the air combat mechanism to construct the target tactical intention space based on the tactical layer. Specifically, suitable characteristics are selected to describe the intention space. We then design a recognition method considering the characteristic of the tactical intention space. Finally, compared with other algorithms, the simulation results show the effectiveness of the proposed method, which outperforms other methods in terms of accuracy at 92%. And the results are more practical.","PeriodicalId":345773,"journal":{"name":"2022 IEEE International Conference on Unmanned Systems (ICUS)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS55513.2022.9986667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As an important support for modern air combat intelligent auxiliary decision-making, real-time and high-precision target intent recognition addresses the foundation for realizing deep situational awareness and creating tactical opportunities. Aiming at the limitation of the existing algorithms such as dependence on empirical knowledge, difficulty in extracting the full temporal characteristics, and inability to meet the requirements of actual air combat, this paper proposes a target tactical intention recognition algorithm based on bi-directional Long Short-Term Memory (BiLSTM). Firstly, we analyze the air combat mechanism to construct the target tactical intention space based on the tactical layer. Specifically, suitable characteristics are selected to describe the intention space. We then design a recognition method considering the characteristic of the tactical intention space. Finally, compared with other algorithms, the simulation results show the effectiveness of the proposed method, which outperforms other methods in terms of accuracy at 92%. And the results are more practical.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BiLSTM网络的空战目标战术意图识别方法
实时、高精度目标意图识别是现代空战智能辅助决策的重要支撑,是实现深度态势感知和创造战术机会的基础。针对现有算法依赖经验知识、难以提取全部时间特征、无法满足实际空战要求等局限性,提出了一种基于双向长短期记忆(BiLSTM)的目标战术意图识别算法。首先,分析了空战机制,构建了基于战术层的目标战术意图空间;具体来说,选择合适的特征来描述意图空间。然后结合战术意图空间的特点设计了一种识别方法。最后,通过与其他算法的比较,仿真结果表明了该方法的有效性,准确率达到92%,优于其他方法。结果更加实用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UNF-SLAM: Unsupervised Feature Extraction Network for Visual-Laser Fusion SLAM Automatic Spinal Ultrasound Image Segmentation and Deployment for Real-time Spine Volumetric Reconstruction Track Matching Method of Sea Surface Targets Based on Improved Longest Common Subsequence Algorithm A dynamic event-triggered leader-following consensus algorithm for multi-AUVs system Adaptive Multi-feature Fusion Improved ECO-HC Image Tracking Algorithm Based on Confidence Judgement for UAV Reconnaissance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1