Acoustic Predictions for the Side-by-Side Air Taxi Rotor in Hover

J. Sagaga, Seongkyu Lee
{"title":"Acoustic Predictions for the Side-by-Side Air Taxi Rotor in Hover","authors":"J. Sagaga, Seongkyu Lee","doi":"10.4050/f-0077-2021-16695","DOIUrl":null,"url":null,"abstract":"\n In this paper, acoustic predictions are performed for the rotors of NASA’s side-by-side Urban Air Mobility (UAM) aircraft in hover. Investigations of the acoustics are performed on four overlap configurations, 0%, 5%, 15%, and 25%, in hover via high-fidelity Computational Fluid Dynamics (CFD) simulations. CFD simulations are carried out using the HPCMP CREATETM-AV Helios and acoustics calculations are conducted using PSUWOPWOP. Blade airloads and performance of the rotors are computed for this study. Predictions on the rotor airloads and wake geometry are compared for all overlap configurations at a collective pitch angle of 8°. It is shown that the 25% overlap configuration yields a higher overall sound pressure level (OASPL) than for the other overlap configurations, mainly due to stronger blade-vortex-interactions at the entrance and exit locations of the overlap region. It is found that the OASPL difference in hover is above 62 dB at an altitude of 500 ft (152.4 m), which is the UAM aircraft noise guideline suggested by Uber. Additionally, noise for all overlap cases are compared against various background noise levels. Results show that noise from the side-by-side rotor could not be fully concealed by the various background noise at an altitude of 500 ft (152.4 m).\n","PeriodicalId":273020,"journal":{"name":"Proceedings of the Vertical Flight Society 77th Annual Forum","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vertical Flight Society 77th Annual Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4050/f-0077-2021-16695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, acoustic predictions are performed for the rotors of NASA’s side-by-side Urban Air Mobility (UAM) aircraft in hover. Investigations of the acoustics are performed on four overlap configurations, 0%, 5%, 15%, and 25%, in hover via high-fidelity Computational Fluid Dynamics (CFD) simulations. CFD simulations are carried out using the HPCMP CREATETM-AV Helios and acoustics calculations are conducted using PSUWOPWOP. Blade airloads and performance of the rotors are computed for this study. Predictions on the rotor airloads and wake geometry are compared for all overlap configurations at a collective pitch angle of 8°. It is shown that the 25% overlap configuration yields a higher overall sound pressure level (OASPL) than for the other overlap configurations, mainly due to stronger blade-vortex-interactions at the entrance and exit locations of the overlap region. It is found that the OASPL difference in hover is above 62 dB at an altitude of 500 ft (152.4 m), which is the UAM aircraft noise guideline suggested by Uber. Additionally, noise for all overlap cases are compared against various background noise levels. Results show that noise from the side-by-side rotor could not be fully concealed by the various background noise at an altitude of 500 ft (152.4 m).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
悬停时并列空中滑行旋翼的声学预测
本文对美国国家航空航天局(NASA)的并排城市空中机动飞机(UAM)的旋翼在悬停状态下进行了声学预测。通过高保真计算流体动力学(CFD)模拟,对悬停时的四种重叠配置(0%、5%、15%和25%)进行了声学研究。使用HPCMP CREATETM-AV Helios进行CFD模拟,使用PSUWOPWOP进行声学计算。本研究计算了叶片气动载荷和转子性能。对转子气动载荷和尾迹几何形状的预测进行了比较,所有重叠配置的集体俯仰角为8°。结果表明,25%的重叠配置比其他重叠配置产生更高的总声压级(OASPL),这主要是由于重叠区域入口和出口位置的叶片-涡相互作用更强。研究发现,在Uber建议的UAM飞机噪声准则500 ft (152.4 m)高度,悬停时的OASPL差值在62 dB以上。此外,将所有重叠情况下的噪声与各种背景噪声水平进行比较。结果表明,在高度为500 ft (152.4 m)时,来自并排转子的噪声不能被各种背景噪声完全掩盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hover Performance in Ground Effect Prediction Using a Dual Solver Computational Methodology AW609 Civil Tiltrotor Drive Train Torsional Stability Analysis and Certification Test Campaign  Boiling Down Aviation Data: Development of the Aviation Data Distillery Reliability-Driven Analysis, Design and Characterization of Rotorcraft Structures: Decision-Making Framework High-Speed Rotorcraft Pitch Axis Response Type Investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1