Deforestation Monitoring in Different Brazilian Biomes: Challenges and Lessons

C. Almeida, D. Valeriano, L. Maurano, L. Vinhas, L. Fonseca, D. Silva, C. P. Santos, F. Martins, F. C. B. Lara, J. S. Maia, E. R. Profeta, L. O. Santos, F. Santos, V. Ribeiro
{"title":"Deforestation Monitoring in Different Brazilian Biomes: Challenges and Lessons","authors":"C. Almeida, D. Valeriano, L. Maurano, L. Vinhas, L. Fonseca, D. Silva, C. P. Santos, F. Martins, F. C. B. Lara, J. S. Maia, E. R. Profeta, L. O. Santos, F. Santos, V. Ribeiro","doi":"10.1109/LAGIRS48042.2020.9285976","DOIUrl":null,"url":null,"abstract":"(100 - 250 words) Monitoring the conversion of native vegetation has challenged Brazilian government and scientists since the 1980s. In the case of the Amazonian forests, the Amazon Gross Deforestation Monitoring Project - PRODES has developed an effective methodology that provides consistent annual data on deforestation areas on a scale of 1:250,000, since 1988. In this article, we present some aspects of the evolution of this methodology, the key processes to produce accurate deforestation maps during the last 30 years and the new challenges that the Project would face. A central lesson is that no computational technique has, to date, been able to achieve the quality of deforestation maps produced by visual interpretation of satellite images and manual mapping.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAGIRS48042.2020.9285976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

(100 - 250 words) Monitoring the conversion of native vegetation has challenged Brazilian government and scientists since the 1980s. In the case of the Amazonian forests, the Amazon Gross Deforestation Monitoring Project - PRODES has developed an effective methodology that provides consistent annual data on deforestation areas on a scale of 1:250,000, since 1988. In this article, we present some aspects of the evolution of this methodology, the key processes to produce accurate deforestation maps during the last 30 years and the new challenges that the Project would face. A central lesson is that no computational technique has, to date, been able to achieve the quality of deforestation maps produced by visual interpretation of satellite images and manual mapping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巴西不同生物群落的森林砍伐监测:挑战和教训
自20世纪80年代以来,监测原生植被的转化一直是巴西政府和科学家面临的挑战。就亚马逊森林而言,亚马逊森林砍伐总量监测项目(PRODES)开发了一种有效的方法,自1988年以来以1:25万的比例提供关于森林砍伐地区的持续年度数据。在本文中,我们介绍了该方法发展的一些方面,在过去30年中制作准确的森林砍伐地图的关键过程以及该项目将面临的新挑战。一个重要的教训是,迄今为止,没有一种计算技术能够达到由卫星图像的视觉解释和手工制图所产生的森林砍伐地图的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deforestation Polygon Assessment Tool: Providing Comprehensive Information On Deforestation In The Brazilian Cerrado Biome Assessment of rainfall influence on sentinel-1 time series on amazonian tropical forests aiming deforestation detection improvement Spatial Association To Characterize The Climate Teleconnection Patterns In Ecuador Based On Satellite Precipitation Estimates Subsidence in Maceio, Brazil, Characterized by Dinsar and Inverse Modeling Preliminary Analysis For Automatic Tidal Inlets Mapping Using Google Earth Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1