Probabilistic Decoupling Control for Stochastic Non-Linear Systems Using EKF-Based Dynamic Set-Point Adjustment

Qichun Zhang, Liang Hu
{"title":"Probabilistic Decoupling Control for Stochastic Non-Linear Systems Using EKF-Based Dynamic Set-Point Adjustment","authors":"Qichun Zhang, Liang Hu","doi":"10.1109/CONTROL.2018.8516784","DOIUrl":null,"url":null,"abstract":"In this paper, a novel decoupling control scheme is presented for a class of stochastic non-linear systems by estimation-based dynamic set-point adjustment. The loop control layer is designed using PID controller where the parameters are fixed once the design procedure is completed, which can be considered as an existing control loop. While the compensator is designed to achieve output decoupling in probability sense by a set-point adjustment approach based on the estimated states of the systems using extended Kalman filter. Based upon the mutual information of the system outputs, the parameters of the set-point adjustment compensator can be optimised. Using this presented control scheme, the analysis of stability is given where the tracking errors of the closed-loop systems are bounded in probability one. To illustrate the effectiveness of the presented control scheme, one numerical example is given and the results show that the systems are stable and the probabilistic decoupling is achieved simultaneously.","PeriodicalId":266112,"journal":{"name":"2018 UKACC 12th International Conference on Control (CONTROL)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 UKACC 12th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONTROL.2018.8516784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, a novel decoupling control scheme is presented for a class of stochastic non-linear systems by estimation-based dynamic set-point adjustment. The loop control layer is designed using PID controller where the parameters are fixed once the design procedure is completed, which can be considered as an existing control loop. While the compensator is designed to achieve output decoupling in probability sense by a set-point adjustment approach based on the estimated states of the systems using extended Kalman filter. Based upon the mutual information of the system outputs, the parameters of the set-point adjustment compensator can be optimised. Using this presented control scheme, the analysis of stability is given where the tracking errors of the closed-loop systems are bounded in probability one. To illustrate the effectiveness of the presented control scheme, one numerical example is given and the results show that the systems are stable and the probabilistic decoupling is achieved simultaneously.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ekf的随机非线性系统动态设定点调整的概率解耦控制
针对一类随机非线性系统,提出了一种基于估计的动态设定点调整解耦控制方法。回路控制层采用PID控制器设计,设计过程完成后参数固定,可以认为是一个既存的控制回路。而补偿器则采用扩展卡尔曼滤波器,基于系统的估计状态,采用设定点调整方法实现概率意义上的输出解耦。基于系统输出的互信息,可以对设定点调整补偿器的参数进行优化。利用所提出的控制方案,对闭环系统的跟踪误差在概率为1的情况下的稳定性进行了分析。为了说明所提出的控制方案的有效性,给出了一个数值算例,结果表明系统是稳定的,同时实现了概率解耦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Linear Model Predictive Control for Preventing Premature Aging in Battery Energy Storage System A Portable Low-Cost Arduino-Based Laboratory Kit for Control Education Modelling and Control of a Biologically Inspired Trenchless Drilling Device Capturing Discontinuities in Optimal Control Problems Online Fault Diagnosis in Petri Net Models of Discrete-Event Systems Using Fourier-Motzkin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1