DNN Application For Pseudo-Spectral FWI

C. Zerafa
{"title":"DNN Application For Pseudo-Spectral FWI","authors":"C. Zerafa","doi":"10.3997/2214-4609.201803015","DOIUrl":null,"url":null,"abstract":"Full-waveform inversion (FWI) is a widely used technique in seismic processing to produce high resolution earth models iteratively improved an earth model using a sequence of linearized local inversions to solve a fully non-linear problem. Deep Neural Networks (DNN) are a subset of machine learning algorithms that are efficient in learning non-linear functionals between input and output pairs. The learning process within DNN involves iteratively updating network neuron weights to best approximate input-to-output mapping. There is clearly a similarity between FWI and DNN for optimization applications. I propose casting FWI as a DNN problem and implement a novel approach which learns pseudo-spectral data-driven FWI. I test this methodology by training a DNN on 1D data and then apply this to previously unseen data. Initial results achieved promising levels of accuracy, although not fully reconstructing the model. Future work will investigate deeper DNNs for better generalization and the application to real data.","PeriodicalId":231338,"journal":{"name":"First EAGE/PESGB Workshop Machine Learning","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First EAGE/PESGB Workshop Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201803015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Full-waveform inversion (FWI) is a widely used technique in seismic processing to produce high resolution earth models iteratively improved an earth model using a sequence of linearized local inversions to solve a fully non-linear problem. Deep Neural Networks (DNN) are a subset of machine learning algorithms that are efficient in learning non-linear functionals between input and output pairs. The learning process within DNN involves iteratively updating network neuron weights to best approximate input-to-output mapping. There is clearly a similarity between FWI and DNN for optimization applications. I propose casting FWI as a DNN problem and implement a novel approach which learns pseudo-spectral data-driven FWI. I test this methodology by training a DNN on 1D data and then apply this to previously unseen data. Initial results achieved promising levels of accuracy, although not fully reconstructing the model. Future work will investigate deeper DNNs for better generalization and the application to real data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNN在伪频谱wi中的应用
全波形反演(full - waveinversion, FWI)是一种广泛应用于地震处理的技术,用于生成高分辨率地球模型,利用一系列线性化局部反演来迭代改进地球模型,以解决全非线性问题。深度神经网络(DNN)是机器学习算法的一个子集,可以有效地学习输入和输出对之间的非线性函数。深度神经网络的学习过程包括迭代更新网络神经元的权重,以最好地近似输入到输出映射。在优化应用中,FWI和DNN显然有相似之处。我建议将FWI作为一个深度神经网络问题,并实现一种学习伪频谱数据驱动的FWI的新方法。我通过在1D数据上训练DNN来测试这种方法,然后将其应用于以前未见过的数据。最初的结果达到了令人满意的精度水平,尽管没有完全重建模型。未来的工作将研究更深层次的dnn,以更好地泛化和应用于实际数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pre-Stack Seismic Inversion With Deep Learning Automatic Facies Classification And Horizon Tracking In 3D Seismic Data Input Data Quality Influence On Lithoclass Predictions In Relation To Supervised Machine Learning Classification And Suppression Of Blending Noise Using CNN Machine Learning To Support Technical Document Indexing, How To Measure The Accuracy?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1