A centralized reinforcement learning method for multi-agent job scheduling in Grid

M. Moradi
{"title":"A centralized reinforcement learning method for multi-agent job scheduling in Grid","authors":"M. Moradi","doi":"10.1109/ICCKE.2016.7802135","DOIUrl":null,"url":null,"abstract":"One of the main challenges in Grid systems is designing an adaptive, scalable, and model-independent method for job scheduling to achieve a desirable degree of load balancing and system efficiency. Centralized job scheduling methods have some drawbacks, such as single point of failure and lack of scalability. Moreover, decentralized methods require a coordination mechanism with limited communications. In this paper, we propose a multi-agent approach to job scheduling in Grid, named Centralized Learning Distributed Scheduling (CLDS), by utilizing the reinforcement learning framework. The CLDS is a model free approach that uses the information of jobs and their completion time to estimate the efficiency of resources. In this method, there are a learner agent and several scheduler agents that perform the task of learning and job scheduling with the use of a coordination strategy that maintains the communication cost at a limited level. We evaluated the efficiency of the CLDS method by designing and performing a set of experiments on a simulated Grid system under different system scales and loads. The results show that the CLDS can effectively balance the load of system even in large scale and heavy loaded Grids, while maintains its adaptive performance and scalability.","PeriodicalId":205768,"journal":{"name":"2016 6th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE.2016.7802135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

One of the main challenges in Grid systems is designing an adaptive, scalable, and model-independent method for job scheduling to achieve a desirable degree of load balancing and system efficiency. Centralized job scheduling methods have some drawbacks, such as single point of failure and lack of scalability. Moreover, decentralized methods require a coordination mechanism with limited communications. In this paper, we propose a multi-agent approach to job scheduling in Grid, named Centralized Learning Distributed Scheduling (CLDS), by utilizing the reinforcement learning framework. The CLDS is a model free approach that uses the information of jobs and their completion time to estimate the efficiency of resources. In this method, there are a learner agent and several scheduler agents that perform the task of learning and job scheduling with the use of a coordination strategy that maintains the communication cost at a limited level. We evaluated the efficiency of the CLDS method by designing and performing a set of experiments on a simulated Grid system under different system scales and loads. The results show that the CLDS can effectively balance the load of system even in large scale and heavy loaded Grids, while maintains its adaptive performance and scalability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网格中多智能体作业调度的集中强化学习方法
网格系统中的主要挑战之一是为作业调度设计一种自适应的、可扩展的和模型独立的方法,以实现理想的负载平衡和系统效率。集中式作业调度方法存在一些缺点,如单点故障和缺乏可扩展性。此外,分散的方法需要一个沟通有限的协调机制。本文利用强化学习框架,提出了一种网格作业调度的多智能体方法,称为集中式学习分布式调度(CLDS)。CLDS是一种无模型的方法,它使用作业及其完成时间的信息来估计资源的效率。在这种方法中,有一个学习代理和几个调度代理,它们使用一种协调策略来执行学习和作业调度任务,使通信成本保持在有限的水平。通过在不同系统规模和负载的模拟电网系统上设计和执行一组实验,评估了CLDS方法的效率。结果表明,即使在大规模、高负荷的电网中,CLDS也能有效地平衡系统负载,同时保持其自适应性能和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling SIP normal traffic to detect and prevent SIP-VoIP flooding attacks using fuzzy logic Anomaly and tampering detection of cameras by providing details Automatic graph-based method for classification of retinal vascular bifurcations and crossovers Multi-objective mobile robot path planning based on A* search HFIaaS: A proposed FPGA Infrastructure as a Service framework using High-Level Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1