On the Blind Classification of Time Series

A. Bissacco, Stefano Soatto
{"title":"On the Blind Classification of Time Series","authors":"A. Bissacco, Stefano Soatto","doi":"10.1109/CVPR.2007.383333","DOIUrl":null,"url":null,"abstract":"We propose a cord distance in the space of dynamical models that takes into account their dynamics, including transients, output maps and input distributions. In data analysis applications, as opposed to control, the input is often not known and is inferred as part of the (blind) identification. So it is an integral part of the model that should be considered when comparing different time series. Previous work on kernel distances between dynamical models assumed either identical or independent inputs. We extend it to arbitrary distributions, highlighting connections with system identification, independent component analysis, and optimal transport. The increased modeling power is demonstrated empirically on gait classification from simple visual features.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"276 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a cord distance in the space of dynamical models that takes into account their dynamics, including transients, output maps and input distributions. In data analysis applications, as opposed to control, the input is often not known and is inferred as part of the (blind) identification. So it is an integral part of the model that should be considered when comparing different time series. Previous work on kernel distances between dynamical models assumed either identical or independent inputs. We extend it to arbitrary distributions, highlighting connections with system identification, independent component analysis, and optimal transport. The increased modeling power is demonstrated empirically on gait classification from simple visual features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间序列的盲分类
我们提出了一个动态模型空间中的弦距,考虑了它们的动态,包括瞬态,输出映射和输入分布。在数据分析应用程序中,与控制相反,输入通常是未知的,并作为(盲)识别的一部分进行推断。因此,在比较不同的时间序列时,它是模型不可分割的一部分。以前关于动态模型之间核距离的研究假设了相同或独立的输入。我们将其扩展到任意分布,强调与系统识别,独立组件分析和最优传输的联系。通过简单的视觉特征对步态进行分类,证明了该方法提高了建模能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Region and Edge Cues for Image Segmentation in a Probabilistic Gaussian Mixture Framework Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression Enhanced Level Building Algorithm for the Movement Epenthesis Problem in Sign Language Recognition Change Detection in a 3-d World Layered Graph Match with Graph Editing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1