Spectral malware behavior clustering

C. Giannella, E. Bloedorn
{"title":"Spectral malware behavior clustering","authors":"C. Giannella, E. Bloedorn","doi":"10.1109/ISI.2015.7165931","DOIUrl":null,"url":null,"abstract":"We develop a version of spectral clustering and empirically study its performance when applied to behavior-based malware clustering. In 2011, a behavior-based malware clustering algorithm was reported by Rieck et al. We hypothesize that, owing to the more complex nature of our algorithm, it will exhibit higher accuracy than Rieck's but will require greater run-time. Through experiments using three different malware datasets, we largely substantiate this hypothesis. Our approach had comparable or superior accuracy to Rieck's over all of its parameter settings examined and ours had higher run-times (nonetheless, ours had run-times of less than one minute on all datasets). We also found our algorithm had no clear accuracy advantage, but much smaller run-times than Hierarchical Agglomerative Clustering.","PeriodicalId":292352,"journal":{"name":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2015.7165931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We develop a version of spectral clustering and empirically study its performance when applied to behavior-based malware clustering. In 2011, a behavior-based malware clustering algorithm was reported by Rieck et al. We hypothesize that, owing to the more complex nature of our algorithm, it will exhibit higher accuracy than Rieck's but will require greater run-time. Through experiments using three different malware datasets, we largely substantiate this hypothesis. Our approach had comparable or superior accuracy to Rieck's over all of its parameter settings examined and ours had higher run-times (nonetheless, ours had run-times of less than one minute on all datasets). We also found our algorithm had no clear accuracy advantage, but much smaller run-times than Hierarchical Agglomerative Clustering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
频谱恶意软件行为聚类
我们开发了一种谱聚类方法,并对其应用于基于行为的恶意软件聚类的性能进行了实证研究。2011年,Rieck等人报道了一种基于行为的恶意软件聚类算法。我们假设,由于我们的算法更复杂,它将比Rieck的算法显示出更高的准确性,但需要更长的运行时间。通过使用三种不同的恶意软件数据集的实验,我们在很大程度上证实了这一假设。我们的方法在所有参数设置上与Rieck的方法具有相当或更高的准确性,并且我们的方法具有更高的运行时间(尽管如此,我们的方法在所有数据集上的运行时间都不到一分钟)。我们还发现,我们的算法没有明显的准确性优势,但比分层凝聚聚类的运行时间要短得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling emotion entrainment of online users in emergency events Exploring the effect of permission notice on users' initial trust to an application store: The case of China's Android application market Multi-objective evolutionary algorithms and multiagent models for optimizing police dispatch Personality based public sentiment classification in microblog Social sensor analytics: Making sense of network models in social media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1