{"title":"A New Coupled Model for the Assessment of Offshore Structures in Non-Gaussian Seas","authors":"G. Decorte, A. Toffoli, G. Lombaert, J. Monbaliu","doi":"10.1115/omae2020-19345","DOIUrl":null,"url":null,"abstract":"\n Although wave-wave interaction phenomena in random seas have shown to lead to a departure from Gaussian statistics and therefore to a higher occurrence of extreme waves, they are usually not taken along in the assessment of the dynamic behaviour of offshore structures. Supported by a rapid increase of computational resources, the use of Computational Fluid Dynamics (CFD) models has become viable for studying the above mentioned wave-structure interaction phenomena. Still, these models remain computationally expensive, which impedes their use for the large domains and the long periods of time necessary for studying non-Gaussian seas. Therefore, a one-way domain decomposition strategy is proposed, which takes advantage of the recent advances in CFD as well as of the computational benefits of the higher-order spectral (HOS) models previously used to assess non-Gaussian seas. The unidirectional non-Gaussian sea obtained by this coupled HOS-CFD model shows excellent agreement with the target wave field generated by the higher-order spectral numerical wave tank. In addition, the wave-structure interaction for a simplified monopile, which is excited by a non-Gaussian sea, seems to be captured well.","PeriodicalId":297013,"journal":{"name":"Volume 2A: Structures, Safety, and Reliability","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: Structures, Safety, and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-19345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Although wave-wave interaction phenomena in random seas have shown to lead to a departure from Gaussian statistics and therefore to a higher occurrence of extreme waves, they are usually not taken along in the assessment of the dynamic behaviour of offshore structures. Supported by a rapid increase of computational resources, the use of Computational Fluid Dynamics (CFD) models has become viable for studying the above mentioned wave-structure interaction phenomena. Still, these models remain computationally expensive, which impedes their use for the large domains and the long periods of time necessary for studying non-Gaussian seas. Therefore, a one-way domain decomposition strategy is proposed, which takes advantage of the recent advances in CFD as well as of the computational benefits of the higher-order spectral (HOS) models previously used to assess non-Gaussian seas. The unidirectional non-Gaussian sea obtained by this coupled HOS-CFD model shows excellent agreement with the target wave field generated by the higher-order spectral numerical wave tank. In addition, the wave-structure interaction for a simplified monopile, which is excited by a non-Gaussian sea, seems to be captured well.