Scene matching NCC value improvement based on contrast matching

A. Pourmohammad, S. Poursajadi, S. Karimifar
{"title":"Scene matching NCC value improvement based on contrast matching","authors":"A. Pourmohammad, S. Poursajadi, S. Karimifar","doi":"10.1109/IRANIANMVIP.2013.6779998","DOIUrl":null,"url":null,"abstract":"Geometrical and radiometrical corrections are important for scene matching applications. We suppose the applications that there are no geometrical errors based on using 3D-Inertial sensors for geometrical corrections. In these cases, Normalized Cross-Correlation (NCC) is commonly used method for scene matching. The problem of matching a pattern image (mask) to an image in these cases needs to correction of radiometrical errors as illumination (contrast) variations. In this paper we show that correlation between a mask and a histogram matched image instead of using that raw version, improves the correlation value. First we match histogram function of the image to histogram function of the mask in order to have two closed contrast images, and then correlate those together using NCC and root mean square error (RMSE) methods. Simulation results confirm that according to using NCC and RMSE simultaneously, not only this method is a fast and real time method, but also according to matching histogram function of the received image to histogram function of the mask, it improves the correlation value. Also we show that using the edge detected version of the mask and histogram matched image, lead us to have the best results.","PeriodicalId":297204,"journal":{"name":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2013.6779998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Geometrical and radiometrical corrections are important for scene matching applications. We suppose the applications that there are no geometrical errors based on using 3D-Inertial sensors for geometrical corrections. In these cases, Normalized Cross-Correlation (NCC) is commonly used method for scene matching. The problem of matching a pattern image (mask) to an image in these cases needs to correction of radiometrical errors as illumination (contrast) variations. In this paper we show that correlation between a mask and a histogram matched image instead of using that raw version, improves the correlation value. First we match histogram function of the image to histogram function of the mask in order to have two closed contrast images, and then correlate those together using NCC and root mean square error (RMSE) methods. Simulation results confirm that according to using NCC and RMSE simultaneously, not only this method is a fast and real time method, but also according to matching histogram function of the received image to histogram function of the mask, it improves the correlation value. Also we show that using the edge detected version of the mask and histogram matched image, lead us to have the best results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于对比度匹配的场景匹配NCC值改进
几何校正和辐射校正对于场景匹配应用非常重要。我们假设在没有几何误差的情况下,使用三维惯性传感器进行几何校正。在这种情况下,归一化互相关(NCC)是常用的场景匹配方法。在这些情况下,将图案图像(掩模)与图像匹配的问题需要校正照明(对比度)变化带来的辐射误差。在本文中,我们证明了掩码与直方图匹配的图像之间的相关性,而不是使用原始版本,提高了相关值。首先,我们将图像的直方图函数与掩模的直方图函数匹配,以获得两个封闭的对比度图像,然后使用NCC和均方根误差(RMSE)方法将它们关联在一起。仿真结果表明,该方法同时使用NCC和RMSE,不仅是一种快速、实时的方法,而且根据接收图像的直方图函数与掩模的直方图函数的匹配,提高了相关值。同时我们也证明了使用边缘检测版的蒙版和直方图进行图像匹配,使我们得到了最好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated lung CT image segmentation using kernel mean shift analysis A simple and efficient approach for 3D model decomposition MRI image reconstruction via new K-space sampling scheme based on separable transform Fusion of SPECT and MRI images using back and fore ground information Real time occlusion handling using Kalman Filter and mean-shift
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1