Research on Text Error Correction Algorithm after Automatic Speech Recognition Based on Pragmatic Information

Yiming Y. Sun, Tianyu Xiao, Chen Yang, Wei Liu
{"title":"Research on Text Error Correction Algorithm after Automatic Speech Recognition Based on Pragmatic Information","authors":"Yiming Y. Sun, Tianyu Xiao, Chen Yang, Wei Liu","doi":"10.1145/3437802.3437830","DOIUrl":null,"url":null,"abstract":"Error correction for automatic speech recognition text is an indispensable part of artificial intelligence. At present, speech to text (STT) has widely requirements for the processing of pragmatic information. The text correct rate in STT is the foundation for NLP. Aiming at the text error problems of traditional error correction methods that cannot understand semantics and sentence meanings well. The proposed method used the long and short-term memory neural network (LSTM) algorithm with monte-carlo tree search in this paper. The text error leads to mistake in semantic slot filling for NLP. Therefore, the proposed combined algorithm and optimization method solved the problem by experiments. The results verified the accuracy increased 25% for the telephone inquiry by text error correction.","PeriodicalId":429866,"journal":{"name":"Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437802.3437830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Error correction for automatic speech recognition text is an indispensable part of artificial intelligence. At present, speech to text (STT) has widely requirements for the processing of pragmatic information. The text correct rate in STT is the foundation for NLP. Aiming at the text error problems of traditional error correction methods that cannot understand semantics and sentence meanings well. The proposed method used the long and short-term memory neural network (LSTM) algorithm with monte-carlo tree search in this paper. The text error leads to mistake in semantic slot filling for NLP. Therefore, the proposed combined algorithm and optimization method solved the problem by experiments. The results verified the accuracy increased 25% for the telephone inquiry by text error correction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语用信息的语音自动识别后文本纠错算法研究
自动语音识别文本的纠错是人工智能不可缺少的一部分。目前,语音到文本(STT)对语用信息的处理有广泛的要求。STT中的文本正确率是自然语言处理的基础。针对传统纠错方法不能很好地理解语义和句子意义的文本错误问题。该方法采用蒙特卡罗树搜索的长短期记忆神经网络(LSTM)算法。文本错误导致了NLP语义槽填充错误。因此,本文提出的算法与优化方法相结合,通过实验解决了这一问题。结果表明,通过文本纠错,电话查询的准确率提高了25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adversarial DGA Domain Examples Generation and Detection Numerical Estimation of Network Traffic Failure Based on Probabilistic Approximation Methods: To what extent the network traffic failure can be predicted? Robot teaching assistant and physical programming class for programming education of young children An improved text classification method based on convolutional neural networks Text Classification Method with Combination of Fuzzy Relation and Feature Distribution Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1