{"title":"Graph-based Attribute-aware Unsupervised Person Re-identification with Contrastive learning","authors":"Ge Cao, Qing Tang, Kanghyun Jo","doi":"10.1109/IWIS56333.2022.9920894","DOIUrl":null,"url":null,"abstract":"This paper is employed on the unsupervised per-son re-identification (Re-ID) task which does not leverage any annotation provided by the target dataset and other datasets. Previous works have investigated the effectiveness of applying self-supervised contrastive learning, which adopts the cluster-based method to generate the pseudo label and split each cluster into multiple proxies by camera ID. This paper applies the Attribute Enhancement Module (AEM), which utilizes Graph Convolutional Network to integrate the correlations between attributes, human body parts features, and the extracted dis-criminative feature. And the experiments are implemented to demonstrate the great performance of the proposed Attribute Enhancement Contrastive Learning (AECL) in camera-agnostic version and camera-aware version on two large-scale datasets, including Market-1501 and DukeMTMC-ReID. Compared with the baseline and the state-of-the-art, the proposed framework achieves competitive results.","PeriodicalId":340399,"journal":{"name":"2022 International Workshop on Intelligent Systems (IWIS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Workshop on Intelligent Systems (IWIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWIS56333.2022.9920894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper is employed on the unsupervised per-son re-identification (Re-ID) task which does not leverage any annotation provided by the target dataset and other datasets. Previous works have investigated the effectiveness of applying self-supervised contrastive learning, which adopts the cluster-based method to generate the pseudo label and split each cluster into multiple proxies by camera ID. This paper applies the Attribute Enhancement Module (AEM), which utilizes Graph Convolutional Network to integrate the correlations between attributes, human body parts features, and the extracted dis-criminative feature. And the experiments are implemented to demonstrate the great performance of the proposed Attribute Enhancement Contrastive Learning (AECL) in camera-agnostic version and camera-aware version on two large-scale datasets, including Market-1501 and DukeMTMC-ReID. Compared with the baseline and the state-of-the-art, the proposed framework achieves competitive results.