Computer Aided Diagnosis for Spitzoid lesions classification using Artificial Intelligence techniques

A. Belaala, L. Terrissa, N. Zerhouni, C. Devalland
{"title":"Computer Aided Diagnosis for Spitzoid lesions classification using Artificial Intelligence techniques","authors":"A. Belaala, L. Terrissa, N. Zerhouni, C. Devalland","doi":"10.4018/ijhisi.2021010102","DOIUrl":null,"url":null,"abstract":"Spitzoid lesions may be largely categorized into Spitz Nevus, Atypical Spitz Tumors, and Spitz Melanomas. Classifying a lesion precisely as Atypical Spitz Tumors or AST is challenging and often requires the integration of clinical, histological, and immunohistochemical features to differentiate AST from regular Spitz Nevus and malignant Spitz Melanomas. Specifically, this paper aims to test several artificial intelligence techniques so as to build a computer-aided diagnosis system. A proposed three-phase approach is being implemented. In Phase 1, collected data are preprocessed with an effective SMOTE-based method being implemented to treat the imbalance data problem. Then, a feature selection mechanism using genetic algorithm (GA) is applied in Phase 2. Finally, in Phase 3, a 10-fold cross-validation method is used to compare the performance of seven machine-learning algorithms for classification. Results obtained with SMOTE-Multilayer Perceptron with GA-based 14 features show the highest classification accuracy, specificity (0.98), and a sensitivity of 0.99.","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijhisi.2021010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Spitzoid lesions may be largely categorized into Spitz Nevus, Atypical Spitz Tumors, and Spitz Melanomas. Classifying a lesion precisely as Atypical Spitz Tumors or AST is challenging and often requires the integration of clinical, histological, and immunohistochemical features to differentiate AST from regular Spitz Nevus and malignant Spitz Melanomas. Specifically, this paper aims to test several artificial intelligence techniques so as to build a computer-aided diagnosis system. A proposed three-phase approach is being implemented. In Phase 1, collected data are preprocessed with an effective SMOTE-based method being implemented to treat the imbalance data problem. Then, a feature selection mechanism using genetic algorithm (GA) is applied in Phase 2. Finally, in Phase 3, a 10-fold cross-validation method is used to compare the performance of seven machine-learning algorithms for classification. Results obtained with SMOTE-Multilayer Perceptron with GA-based 14 features show the highest classification accuracy, specificity (0.98), and a sensitivity of 0.99.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用人工智能技术进行Spitzoid病变分类的计算机辅助诊断
Spitz样病变大致可分为Spitz痣、非典型Spitz肿瘤和Spitz黑色素瘤。准确地将病变分类为非典型Spitz肿瘤或AST是具有挑战性的,通常需要结合临床、组织学和免疫组织化学特征来区分AST与正常Spitz痣和恶性Spitz黑色素瘤。具体而言,本文旨在测试几种人工智能技术,以构建计算机辅助诊断系统。拟议的三阶段方法正在实施中。在阶段1中,使用基于smote的有效方法对收集的数据进行预处理,以处理数据不平衡问题。然后,在第二阶段采用了基于遗传算法的特征选择机制。最后,在阶段3中,使用10倍交叉验证方法来比较七种机器学习分类算法的性能。使用基于ga的SMOTE-Multilayer Perceptron获得的结果显示出最高的分类准确率、特异性(0.98)和灵敏度(0.99)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Management of Electronic Health Records in Virtual Health Environments: The Case of Rocket Health in Uganda Hospital Management Practice of Combined Prediction Method Based on Neural Network Tablet in the Consultation Room and Physician Satisfaction Digital Disparities in Patient Adoption of Telemedicine: A Qualitative Analysis of the Patient Experience A Deep Neural Network for Detecting Coronavirus Disease Using Chest X-Ray Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1